@article{SchmittTitschackBaum, author = {Schmitt, Kira and Titschack, J{\"u}rgen and Baum, Daniel}, title = {Polyp-Cavity Segmentation of Cold-Water Corals guided by Ambient Occlusion and Ambient Curvature}, series = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, journal = {Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM)}, doi = {10.2312/vcbm.20221189}, abstract = {The segmentation of cavities in three-dimensional images of arbitrary objects is a difficult problem since the cavities are usually connected to the outside of the object without any difference in image intensity. Hence, the information whether a voxel belongs to a cavity or the outside needs to be derived from the ambient space. If a voxel is enclosed by object material, it is very likely that this voxel belongs to a cavity. However, there are dense structures where a voxel might still belong to the outside even though it is surrounded to a large degree by the object. This is, for example, the case for coral colonies. Therefore, additional information needs to be considered to distinguish between those cases. In this paper, we introduce the notion of ambient curvature, present an efficient way to compute it, and use it to segment coral polyp cavities by integrating it into the ambient occlusion framework. Moreover, we combine the ambient curvature with other ambient information in a Gaussian mixture model, trained from a few user scribbles, resulting in a significantly improved cavity segmentation. We showcase the superiority of our approach using four coral colonies of very different morphological types. While in this paper we restrict ourselves to coral data, we believe that the concept of ambient curvature is also useful for other data. Furthermore, our approach is not restricted to curvature but can be easily extended to exploit any properties given on an object's surface, thereby adjusting it to specific applications.}, language = {en} } @article{SchmittTitschackBaum, author = {Schmitt, Kira and Titschack, J{\"u}rgen and Baum, Daniel}, title = {CoDA: Interactive Segmentation and Morphological Analysis of Dendroid Structures Exemplified on Stony Cold-Water Corals}, doi = {https://doi.org/10.48550/arXiv.2406.18236}, abstract = {Dendroid stony corals build highly complex colonies that develop from a single coral polyp sitting in a cup-like skeleton, called corallite, by asexual reproduction, resulting in a tree-like branching pattern of its skeleton. Despite their beauty and ecological importance as reef builders in tropical shallow-water reefs as well as in cold-water coral mounds in the deep ocean, systematic studies investigating the ontogenetic morphological development of such coral colonies are largely missing. One reason for this is the sheer number of corallites - up to several thousands in a single coral colony. Another limiting factor, especially for the analysis of dendroid cold-water corals, is the existence of many secondary joints in the ideally tree-like structure that make a reconstruction of the skeleton tree extremely tedious. Herein, we present CoDA, the Coral Dendroid structure Analyzer, a visual analytics suite that allows for the first time to investigate the ontogenetic morphological development of complex dendroid coral colonies, exemplified on three important framework-forming dendroid cold-water corals: Lophelia pertusa (Linnaeus, 1758), Madrepora oculata (Linnaeus, 1758), and Goniocorella dumosa (Alcock, 1902). Input to CoDA is an initial instance segmentation of the coral polyp cavities (calices), from which it estimates the skeleton tree of the colony and extracts classical morphological measurements and advanced shape features of the individual corallites. CoDA also works as a proofreading and error correction tool by helping to identify wrong parts in the skeleton tree and providing tools to quickly correct these errors. The final skeleton tree enables the derivation of additional information about the calices/corallite instances that otherwise could not be obtained, including their ontogenetic generation and branching patterns - the basis of a fully quantitative statistical analysis of the coral colony morphology. Part of CoDA is CoDA.Graph, a feature-rich link-and-brush user interface for visualizing the extracted features and 2D graph layouts of the skeleton tree, enabling the real-time exploration of complex coral colonies and their building blocks, the individual corallites and branches. In the future, we expect CoDA to greatly facilitate the analysis of large stony corals of different species and morphotypes, as well as other dendroid structures, enabling new insights into the influence of genetic and environmental factors on their ontogenetic morphological development.}, language = {en} }