@article{ErnstUngerSchuetteetal., author = {Ernst, Ariane and Unger, Nathalie and Sch{\"u}tte, Christof and Walter, Alexander and Winkelmann, Stefanie}, title = {Rate-limiting recovery processes in neurotransmission under sustained stimulation}, series = {Mathematical Biosciences}, volume = {362}, journal = {Mathematical Biosciences}, doi = {10.1016/j.mbs.2023.109023}, abstract = {At chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotrans-mission under high-frequency sustained stimulation. In order to investigate this question, we introduce a novel non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes a single release site, the average over many release sites is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate- limiting feature changes over the course of stimulation. Under sustained stimulation the dynamics given by the ODEs exhibit transient dynamics leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior an asymptotic periodicity of the ODE-solution.}, language = {de} } @article{EngelOliconMendezWehlitzetal., author = {Engel, Maximilian and Olic{\´o}n-M{\´e}ndez, Guillermo and Wehlitz, Nathalie and Winkelmann, Stefanie}, title = {Synchronization and random attractors in reaction jump processes}, series = {Journal of Dynamics and Differential Equations}, journal = {Journal of Dynamics and Differential Equations}, doi = {10.1007/s10884-023-10345-4}, abstract = {This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie's stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.}, language = {en} }