@misc{RayThiesSunkaraetal.2021, author = {Ray, Sourav and Thies, Arne and Sunkara, Vikram and Wulkow, Hanna and Celik, {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82797}, year = {2021}, abstract = {Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} } @article{BorndoerferDaneckerWeiser2023, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Error Bounds for Discrete-Continuous Free Flight Trajectory Optimization}, volume = {198}, journal = {Journal of Optimization Theory and Applications}, doi = {10.1007/s10957-023-02264-7}, pages = {830 -- 856}, year = {2023}, abstract = {Flight planning, the computation of optimal routes in view of flight time and fuel consumption under given weather conditions, is traditionally done by finding globally shortest paths in a predefined airway network. Free flight trajectories, not restricted to a network, have the potential to reduce the costs significantly, and can be computed using locally convergent continuous optimal control methods. Hybrid methods that start with a discrete global search and refine with a fast continuous local optimization combine the best properties of both approaches, but rely on a good switchover, which requires error estimates for discrete paths relative to continuous trajectories. Based on vertex density and local complete connectivity, we derive localized and a priori bounds for the flight time of discrete paths relative to the optimal continuous trajectory, and illustrate their properties on a set of benchmark problems. It turns out that localization improves the error bound by four orders of magnitude, but still leaves ample opportunities for tighter bounds using a posteriori error estimators.}, language = {en} } @misc{RiberaBorrellQuerRichteretal.2021, author = {Ribera Borrell, Enric and Quer, Jannes and Richter, Lorenz and Sch{\"u}tte, Christof}, title = {Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics}, issn = {1438-0064}, year = {2021}, abstract = {Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings.}, language = {en} } @misc{KostreSunkaraSchuetteetal.2022, author = {Kostr{\´e}, Margarita and Sunkara, Vikram and Sch{\"u}tte, Christof and Djurdjevac Conrad, Nataša}, title = {Understanding the Romanization Spreading on Historical Interregional Networks in Northern Tunisia}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86764}, year = {2022}, abstract = {Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times.}, language = {en} } @misc{BorndoerferDaneckerWeiser2023, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Newton's Method for Global Free Flight Trajectory Optimization}, doi = {10.12752/8987}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89876}, year = {2023}, abstract = {Globally optimal free flight trajectory optimization can be achieved with a combination of discrete and continuous optimization. A key requirement is that Newton's method for continuous optimization converges in a sufficiently large neighborhood around a minimizer. We show in this paper that, under certain assumptions, this is the case.}, language = {en} } @misc{SchuetteKlusHartmann2022, author = {Sch{\"u}tte, Christof and Klus, Stefan and Hartmann, Carsten}, title = {Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88637}, year = {2022}, abstract = {One of the main challenges in molecular dynamics is overcoming the "timescale barrier", a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.}, language = {en} } @misc{StraubeWinkelmannHoefling2022, author = {Straube, Arthur and Winkelmann, Stefanie and H{\"o}fling, Felix}, title = {Accurate reduced models for the pH oscillations in the urea-urease reaction confined to giant lipid vesicles}, issn = {1438-0064}, doi = {10.12752/8817}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88179}, year = {2022}, abstract = {Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.}, language = {en} } @article{NiemannWinkelmannWolfetal.2021, author = {Niemann, Jan-Hendrik and Winkelmann, Stefanie and Wolf, Sarah and Sch{\"u}tte, Christof}, title = {Agent-based modeling: Population limits and large timescales}, volume = {31}, journal = {Chaos: An Interdisciplinary Journal of Nonlinear Science}, number = {3}, issn = {1438-0064}, doi = {10.1063/5.0031373}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77309}, year = {2021}, abstract = {Modeling, simulation and analysis of interacting agent systems is a broad field of research, with existing approaches reaching from informal descriptions of interaction dynamics to more formal, mathematical models. In this paper, we study agent-based models (ABMs) given as continuous-time stochastic processes and their pathwise approximation by ordinary and stochastic differential equations (ODEs and SDEs, respectively) for medium to large populations. By means of an appropriately adapted transfer operator approach we study the behavior of the ABM process on long time scales. We show that, under certain conditions, the transfer operator approach allows to bridge the gap between the pathwise results for large populations on finite timescales, i.e., the SDE limit model, and approaches built to study dynamical behavior on long time scales like large deviation theory. The latter provides a rigorous analysis of rare events including the associated asymptotic rates on timescales that scale exponentially with the population size. We demonstrate that it is possible to reveal metastable structures and timescales of rare events of the ABM process by finite-length trajectories of the SDE process for large enough populations. This approach has the potential to drastically reduce computational effort for the analysis of ABMs.}, language = {en} } @misc{BittracherSchuette2020, author = {Bittracher, Andreas and Sch{\"u}tte, Christof}, title = {A probabilistic algorithm for aggregating vastly undersampled large Markov chains}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78688}, year = {2020}, abstract = {Model reduction of large Markov chains is an essential step in a wide array of techniques for understanding complex systems and for efficiently learning structures from high-dimensional data. We present a novel aggregation algorithm for compressing such chains that exploits a specific low-rank structure in the transition matrix which, e.g., is present in metastable systems, among others. It enables the recovery of the aggregates from a vastly undersampled transition matrix which in practical applications may gain a speedup of several orders of mag- nitude over methods that require the full transition matrix. Moreover, we show that the new technique is robust under perturbation of the transition matrix. The practical applicability of the new method is demonstrated by identifying a reduced model for the large-scale traffic flow patterns from real-world taxi trip data.}, language = {en} } @misc{RaySunkaraSchuetteetal.2020, author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, issn = {1438-0064}, doi = {10.1080/08927022.2020.1839660}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78437}, year = {2020}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a \$\mu\$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction.}, language = {en} }