@misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Geodesic B-Score for Improved Assessment of Knee Osteoarthritis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81930}, abstract = {Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Geodesic B-Score for Improved Assessment of Knee Osteoarthritis}, series = {Proc. Information Processing in Medical Imaging (IPMI)}, booktitle = {Proc. Information Processing in Medical Imaging (IPMI)}, doi = {10.1007/978-3-030-78191-0_14}, pages = {177 -- 188}, abstract = {Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.}, language = {en} } @misc{Spenger, type = {Master Thesis}, author = {Spenger, Jonas}, title = {Using Blockchain for Tamper-Proof Broadcast Protocols}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79165}, abstract = {We present the tamper-resistant broadcast abstraction of the Bitcoin blockchain, and show how it can be used to implement tamper-resistant replicated state machines. The tamper-resistant broadcast abstraction provides functionality to: broadcast, deliver, and verify messages. The tamper-resistant property ensures: 1) the probabilistic protection against byzantine behaviour, and 2) the probabilistic verifiability that no tampering has occurred. In this work, we study various tamper-resistant broadcast protocols for: different environmental models (public/permissioned, bounded/unbounded, byzantine fault tolerant (BFT)/non-BFT, native/non-native); as well as different properties, such as ordering guarantees (FIFO-order, causal-order, total-order), and delivery guarantees (validity, agreement, uniform). This way, we can match the protocol to the required environment model and consistency model of the replicated state machine. We implemented the tamper-resistant broadcast abstraction as a proof of concept. The results show that the implemented tamper-resistant broadcast protocols can compete on throughput and latency with other state-of-the-art broadcast technologies. Use cases, such as a tamper-resistant file system, supply chain tracking, and a timestamp server highlight the expressiveness of the abstraction. In conclusion, the tamper-resistant broadcast protocols provide a powerful interface, with clear semantics and tunable settings, enabling the design of tamper-resistant applications.}, language = {en} } @article{ThielDjurdjevacConradNtinietal., author = {Thiel, Denise and Djurdjevac Conrad, Natasa and Ntini, Evgenia and Peschutter, Ria and Siebert, Heike and Marsico, Annalisa}, title = {Identifying lncRNA-mediated regulatory modules via ChIA-PET network analysis}, series = {BMC Bioinformatics}, volume = {20}, journal = {BMC Bioinformatics}, number = {1471-2105}, doi = {10.1186/s12859-019-2900-8}, abstract = {Background: Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA co-expression, have been applied to characterize lncRNA of unknown function by means of 'guilt-by-association', no strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph. Results: To better understand the function of chromatin interactions in the context of lncRNA-mediated gene regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs. This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for clustering on graphs. Conclusions: Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger components we mine putative regulatory functions for uncharacterized lncRNAs.}, language = {en} } @phdthesis{Ambellan, author = {Ambellan, Felix}, title = {Efficient Riemannian Statistical Shape Analysis with Applications in Disease Assessment}, doi = {10.17169/refubium-36729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:188-refubium-37016-3}, abstract = {In this work, we address the challenge of developing statistical shape models that account for the non-Euclidean nature inherent to (anatomical) shape variation and at the same time offer fast, numerically robust processing and as much invariance as possible regarding translation and rotation, i.e. Euclidean motion. With the aim of doing that we formulate a continuous and physically motivated notion of shape space based on deformation gradients. We follow two different tracks endowing this differential representation with a Riemannian structure to establish a statistical shape model. (1) We derive a model based on differential coordinates as elements in GL(3)+. To this end, we adapt the notion of bi-invariant means employing an affine connection structure on GL(3)+. Furthermore, we perform second-order statistics based on a family of Riemannian metrics providing the most possible invariance, viz. GL(3)+-left-invariance and O(3)-right-invariance. (2) We endow the differential coordinates with a non-Euclidean structure, that stems from a product Lie group of stretches and rotations. This structure admits a bi-invariant metric and thus allows for a consistent analysis via manifold-valued Riemannian statistics. This work further presents a novel shape representation based on discrete fundamental forms that is naturally invariant under Euclidean motion, namely the fundamental coordinates. We endow this representation with a Lie group structure that admits bi-invariant metrics and therefore allows for consistent analysis using manifold-valued statistics based on the Riemannian framework. Furthermore, we derive a simple, efficient, robust, yet accurate (i.e. without resorting to model approximations) solver for the inverse problem that allows for interactive applications. Beyond statistical shape modeling the proposed framework is amenable for surface processing such as quasi-isometric flattening. Additionally, the last part of the thesis aims on shape-based, continuous disease stratification to provide means that objectify disease assessment over the current clinical practice of ordinal grading systems. Therefore, we derive the geodesic B-score, a generalization of the of the Euclidean B-score, in order to assess knee osteoarthritis. In this context we present a Newton-type fixed point iteration for projection onto geodesics in shape space. On the application side, we show that the derived geodesic B-score features, in comparison to its Euclidean counterpart, an improved predictive performance on assessing the risk of total knee replacement surgery.}, language = {en} } @article{PeppertvonKleistSchuetteetal., author = {Peppert, Felix and von Kleist, Max and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {On the Sufficient Condition for Solving the Gap-Filling Problem Using Deep Convolutional Neural Networks}, series = {IEEE Transactions on Neural Networks and Learning Systems}, volume = {33}, journal = {IEEE Transactions on Neural Networks and Learning Systems}, number = {11}, doi = {10.1109/TNNLS.2021.3072746}, pages = {6194 -- 6205}, abstract = {Deep convolutional neural networks (DCNNs) are routinely used for image segmentation of biomedical data sets to obtain quantitative measurements of cellular structures like tissues. These cellular structures often contain gaps in their boundaries, leading to poor segmentation performance when using DCNNs like the U-Net. The gaps can usually be corrected by post-hoc computer vision (CV) steps, which are specific to the data set and require a disproportionate amount of work. As DCNNs are Universal Function Approximators, it is conceivable that the corrections should be obsolete by selecting the appropriate architecture for the DCNN. In this article, we present a novel theoretical framework for the gap-filling problem in DCNNs that allows the selection of architecture to circumvent the CV steps. Combining information-theoretic measures of the data set with a fundamental property of DCNNs, the size of their receptive field, allows us to formulate statements about the solvability of the gap-filling problem independent of the specifics of model training. In particular, we obtain mathematical proof showing that the maximum proficiency of filling a gap by a DCNN is achieved if its receptive field is larger than the gap length. We then demonstrate the consequence of this result using numerical experiments on a synthetic and real data set and compare the gap-filling ability of the ubiquitous U-Net architecture with variable depths. Our code is available at https://github.com/ai-biology/dcnn-gap-filling.}, language = {en} } @article{SchulzePeppertSchuetteetal., author = {Schulze, Kenrick and Peppert, Felix and Sch{\"u}tte, Christof and Sunkara, Vikram}, title = {Chimeric U-Net-Modifying the standard U-Net towards Explainability}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2022.12.01.518699}, language = {en} } @article{VuHanSchettinoWeissetal., author = {Vu-Han, Tu-Lan and Schettino, Rodrigo Bermudez and Weiß, Claudia and Perka, Carsten and Winkler, Tobias and Sunkara, Vikram and Pumberger, Matthias}, title = {An interpretable data-driven prediction model to anticipate scoliosis in spinal muscular atrophy in the era of (gene-) therapies}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {11838}, doi = {https://doi.org/10.1038/s41598-024-62720-w}, abstract = {5q-spinal muscular atrophy (SMA) is a neuromuscular disorder (NMD) that has become one of the first 5\% treatable rare diseases. The efficacy of new SMA therapies is creating a dynamic SMA patient landscape, where disease progression and scoliosis development play a central role, however, remain difficult to anticipate. New approaches to anticipate disease progression and associated sequelae will be needed to continuously provide these patients the best standard of care. Here we developed an interpretable machine learning (ML) model that can function as an assistive tool in the anticipation of SMA-associated scoliosis based on disease progression markers. We collected longitudinal data from 86 genetically confirmed SMA patients. We selected six features routinely assessed over time to train a random forest classifier. The model achieved a mean accuracy of 0.77 (SD 0.2) and an average ROC AUC of 0.85 (SD 0.17). For class 1 'scoliosis' the average precision was 0.84 (SD 0.11), recall 0.89 (SD 0.22), F1-score of 0.85 (SD 0.17), respectively. Our trained model could predict scoliosis using selected disease progression markers and was consistent with the radiological measurements. During post validation, the model could predict scoliosis in patients who were unseen during training. We also demonstrate that rare disease data sets can be wrangled to build predictive ML models. Interpretable ML models can function as assistive tools in a changing disease landscape and have the potential to democratize expertise that is otherwise clustered at specialized centers.}, language = {en} }