@misc{BittracherSchuette2020, author = {Bittracher, Andreas and Sch{\"u}tte, Christof}, title = {A probabilistic algorithm for aggregating vastly undersampled large Markov chains}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78688}, year = {2020}, abstract = {Model reduction of large Markov chains is an essential step in a wide array of techniques for understanding complex systems and for efficiently learning structures from high-dimensional data. We present a novel aggregation algorithm for compressing such chains that exploits a specific low-rank structure in the transition matrix which, e.g., is present in metastable systems, among others. It enables the recovery of the aggregates from a vastly undersampled transition matrix which in practical applications may gain a speedup of several orders of mag- nitude over methods that require the full transition matrix. Moreover, we show that the new technique is robust under perturbation of the transition matrix. The practical applicability of the new method is demonstrated by identifying a reduced model for the large-scale traffic flow patterns from real-world taxi trip data.}, language = {en} } @misc{RaySunkaraSchuetteetal.2020, author = {Ray, Sourav and Sunkara, Vikram and Sch{\"u}tte, Christof and Weber, Marcus}, title = {How to calculate pH-dependent binding rates for receptor-ligand systems based on thermodynamic simulations with different binding motifs}, issn = {1438-0064}, doi = {10.1080/08927022.2020.1839660}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78437}, year = {2020}, abstract = {Molecular simulations of ligand-receptor interactions are a computational challenge, especially when their association- (``on''-rate) and dissociation- (``off''-rate) mechanisms are working on vastly differing timescales. In addition, the timescale of the simulations themselves is, in practice, orders of magnitudes smaller than that of the mechanisms; which further adds to the complexity of observing these mechanisms, and of drawing meaningful and significant biological insights from the simulation. One way of tackling this multiscale problem is to compute the free-energy landscapes, where molecular dynamics (MD) trajectories are used to only produce certain statistical ensembles. The approach allows for deriving the transition rates between energy states as a function of the height of the activation-energy barriers. In this article, we derive the association rates of the opioids fentanyl and N-(3-fluoro-1-phenethylpiperidin-4-yl)- N-phenyl propionamide (NFEPP) in a \$\mu\$-opioid receptor by combining the free-energy landscape approach with the square-root-approximation method (SQRA), which is a particularly robust version of Markov modelling. The novelty of this work is that we derive the association rates as a function of the pH level using only an ensemble of MD simulations. We also verify our MD-derived insights by reproducing the in vitro study performed by the Stein Lab, who investigated the influence of pH on the inhibitory constant of fentanyl and NFEPP (Spahn et al. 2017). MD simulations are far more accessible and cost-effective than in vitro and in vivo studies. Especially in the context of the current opioid crisis, MD simulations can aid in unravelling molecular functionality and assist in clinical decision-making; the approaches presented in this paper are a pertinent step forward in this direction.}, language = {en} } @misc{RayThiesSunkaraetal.2021, author = {Ray, Sourav and Thies, Arne and Sunkara, Vikram and Wulkow, Hanna and Celik, {\"O}zg{\"u}r and Yerg{\"o}z, Fatih and Sch{\"u}tte, Christof and Stein, Christoph and Weber, Marcus and Winkelmann, Stefanie}, title = {Modelling altered signalling of G-protein coupled receptors in inflamed environment to advance drug design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82797}, year = {2021}, abstract = {Initiated by mathematical modelling of extracellular interactions between G-protein coupled receptors (GPCRs) and ligands in normal versus diseased (inflamed) environments, we previously reported the successful design, synthesis and testing of the prototype opioid painkiller NFEPP that does not elicit adverse side effects. Uniquely, this design recognised that GPCRs function differently under pathological versus healthy conditions. We now present a novel stochastic model of GPCR function that includes intracellular dissociation of G-protein subunits and modulation of plasma membrane calcium channels associated with parameters of inflamed tissue (pH, radicals). By means of molecular dynamics simulations, we also assessed qualitative changes of the reaction rates due to additional disulfide bridges inside the GPCR binding pocket and used these rates for stochastic simulations of the corresponding reaction jump process. The modelling results were validated with in vitro experiments measuring calcium currents and G-protein activation. We found markedly reduced G-protein dissociation and calcium channel inhibition induced by NFEPP at normal pH, and enhanced constitutive G-protein activation but lower probability of ligand binding with increasing radical concentrations. These results suggest that, compared to radicals, low pH is a more important determinant of overall GPCR function in an inflamed environment. Future drug design efforts should take this into account.}, language = {en} }