@misc{BorndoerferKarbsteinMehrgardtetal.2014, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas}, title = {The Cycle Embedding Problem}, issn = {1438-0064}, doi = {10.1007/978-3-319-28697-6_65}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52788}, year = {2014}, abstract = {Given two hypergraphs, representing a fine and a coarse "layer", and a cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP) asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard for general hypergraphs, but it can be solved in polynomial time for graphs. We propose an integer rogramming formulation for the CEP that provides a complete escription of the CEP polytope for the graphical case. The CEP comes up in railway vehicle rotation scheduling. We present computational results for problem instances of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning approach.}, language = {en} } @inproceedings{Reuther2014, author = {Reuther, Markus}, title = {Local Search for the Resource Constrained Assignment Problem}, volume = {42}, booktitle = {14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems}, doi = {10.4230/OASIcs.ATMOS.2014.62}, pages = {62 -- 78}, year = {2014}, abstract = {The resource constrained assignment problem (RCAP) is to find a minimal cost cycle partition in a directed graph such that a resource constraint is fulfilled. The RCAP has its roots in an application that deals with the covering of a railway timetable by rolling stock vehicles. Here, the resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP generalizes several variants of vehicle routing problems. We contribute a local search algorithm for this problem that is derived from an exact algorithm which is similar to the Hungarian method for the standard assignment problem. Our algorithm can be summarized as a k-OPT heuristic, exchanging k arcs of an alternating cycle of the incumbent solution in each improvement step. The alternating cycles are found by dual arguments from linear programming. We present computational results for instances from our railway application at Deutsche Bahn Fernverkehr AG as well as for instances of the vehicle routing problem from the literature.}, language = {en} } @inproceedings{BorndoerferMehrgardtReutheretal.2014, author = {Bornd{\"o}rfer, Ralf and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas and Waas, Kerstin}, title = {Re-Optimization of Rolling Stock Rotations}, edition = {Operations Research Proceedings 2013}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-07001-8_8}, pages = {49 -- 55}, year = {2014}, abstract = {The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, such as vehicle composition, maintenance constraints, and regularity aspects. In industrial applications existing vehicle rotations often have to be re-optimized to deal with timetable changes or construction sites. We present an integrated modeling and algorithmic approach to this task as well as computational results for industrial problem instances of DB Fernverkehr AG.}, language = {en} } @inproceedings{SchadeBorndoerferBreueretal.2017, author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, booktitle = {Proceedings of the IAROR conference RailLille}, year = {2017}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @inproceedings{BorndoerferReutherSchlechteetal.2015, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Schulz, Christof and Swarat, Elmar and Weider, Steffen}, title = {Duty Rostering in Public Transport - Facing Preferences, Fairness, and Fatigue}, booktitle = {Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015)}, year = {2015}, abstract = {Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.}, language = {en} } @article{BorndoerferReutherSchlechteetal.2016, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Waas, Kerstin and Weider, Steffen}, title = {Integrated Optimization of Rolling Stock Rotations for Intercity Railways}, volume = {50}, journal = {Transportation Science}, number = {3}, doi = {10.1287/trsc.2015.0633}, pages = {863 -- 877}, year = {2016}, abstract = {This paper proposes a highly integrated solution approach for rolling stock planning problems in the context of long distance passenger traffic between cities. The main contributions are a generic hypergraph-based mixed-integer programming model for the considered rolling stock rotation problem and an integrated algorithm for its solution. The newly developed algorithm is able to handle a large spectrum of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacities, and regularity aspects. We show that our approach has the power to produce rolling stock rotations that can be implemented in practice. In this way, the rolling stock rotations at the largest German long distance operator Deutsche Bahn Fernverkehr AG could be optimized by an automated system utilizing advanced mathematical programming techniques.}, language = {en} } @article{BorndoerferGrimmReutheretal.2017, author = {Bornd{\"o}rfer, Ralf and Grimm, Boris and Reuther, Markus and Schlechte, Thomas}, title = {Template-based Re-optimization of Rolling Stock Rotations}, journal = {Public Transport}, publisher = {Springer}, doi = {10.1007/s12469-017-0152-4}, pages = {1 -- 19}, year = {2017}, abstract = {Rolling stock, i.e., the set of railway vehicles, is among the most expensive and limited assets of a railway company and must be used efficiently. We consider in this paper the re-optimization problem to recover from unforeseen disruptions. We propose a template concept that allows to recover cost minimal rolling stock rotations from reference rotations under a large variety of operational requirements. To this end, connection templates as well as rotation templates are introduced and their application within a rolling stock rotation planning model is discussed. We present an implementation within the rolling stock rotation optimization framework rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe.}, language = {en} } @inproceedings{BorndoerferReutherSchlechte2014, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas}, title = {A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem}, volume = {42}, booktitle = {14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems}, doi = {10.4230/OASIcs.ATMOS.2014.79}, pages = {79 -- 91}, year = {2014}, abstract = {We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems.}, language = {en} } @misc{BorndoerferLoebelReutheretal.2012, author = {Bornd{\"o}rfer, Ralf and L{\"o}bel, Andreas and Reuther, Markus and Schlechte, Thomas and Weider, Steffen}, title = {Rapid Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14728}, number = {12-10}, year = {2012}, abstract = {We propose rapid branching (RB) as a general branch-and-bound heuristic for solving large scale optimization problems in traffic and transport. The key idea is to combine a special branching rule and a greedy node selection strategy in order to produce solutions of controlled quality rapidly and efficiently. We report on three successful applications of the method for integrated vehicle and crew scheduling, railway track allocation, and railway vehicle rotation planning.}, language = {en} } @misc{BorndoerferReutherSchlechteetal.2012, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Weider, Steffen}, title = {Vehicle Rotation Planning for Intercity Railways}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14731}, number = {12-11}, year = {2012}, abstract = {This paper provides a generic formulation for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a graph theoretical model and a Mixed-Integer-Programming formulation that integrate all main requirements of the considered Vehicle-Rotation-Planning problem (VRPP). We show that it is possible to solve this model for real-world instances provided by our industrial partner DB Fernverkehr AG using modern algorithms and computers.}, language = {en} } @article{BorndoerferEsserFrankenbergeretal.2021, author = {Bornd{\"o}rfer, Ralf and Eßer, Thomas and Frankenberger, Patrick and Huck, Andreas and Jobmann, Christoph and Krostitz, Boris and Kuchenbecker, Karsten and Moorhagen, Kai and Nagl, Philipp and Peterson, Michael and Reuther, Markus and Schang, Thilo and Schoch, Michael and Sch{\"u}lldorf, Hanno and Sch{\"u}tz, Peter and Therolf, Tobias and Waas, Kerstin and Weider, Steffen}, title = {Deutsche Bahn Schedules Train Rotations Using Hypergraph Optimization}, volume = {51}, journal = {Informs Journal on Applied Analytics}, number = {1}, doi = {10.1287/inte.2020.1069}, pages = {42 -- 62}, year = {2021}, abstract = {Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are ad-dressed using a novel coarse-to-fine method that implements a hierarchical column genera-tion over three levels of detail. This algorithm is the mathematical core of DB's fleet em-ployment optimization (FEO) system for rolling stock rotation planning. FEO's impact within DB's planning departments has been revolutionary. DB has used it to support the company's procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for cross-border operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB's plan-ning departments appreciate FEO's high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in cross-border operations to the implementation of FEO.}, language = {en} } @inproceedings{KlugReutherSchlechte2022, author = {Klug, Torsten and Reuther, Markus and Schlechte, Thomas}, title = {Does Laziness Pay Off? - A Lazy-Constraint Approach to Timetabling}, volume = {106}, booktitle = {22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2022)}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, doi = {10.4230/OASIcs.ATMOS.2022.11}, pages = {11:1 -- 11:8}, year = {2022}, abstract = {Timetabling is a classical and complex task for public transport operators as well as for railway undertakings. The general question is: Which vehicle is taking which route through the transportation network in which order? In this paper, we consider the special setting to find optimal timetables for railway systems under a moving block regime. We directly set up on our work of [8 ], i.e., we consider the same model formulation and real-world instances of a moving block headway system. In this paper, we present a repair heuristic and a lazy-constraint approach utilizing the callback features of Gurobi, see [3]. We provide an experimental study of the different algorithmic approaches for a railway network with 100 and up to 300 train requests. The computational results show that the lazy-constraint approach together with the repair heuristic significantly improves our previous approaches.}, language = {en} } @article{SchlechteBorndoerferDenissenetal.2022, author = {Schlechte, Thomas and Bornd{\"o}rfer, Ralf and Denißen, Jonas and Heller, Simon and Klug, Torsten and K{\"u}pper, Michael and Lindner, Niels and Reuther, Markus and S{\"o}hlke, Andreas and Steadman, William}, title = {Timetable Optimization for a Moving Block System}, volume = {22}, journal = {Journal of Rail Transport Planning \& Management}, issn = {2210-9706}, doi = {10.1016/j.jrtpm.2022.100315}, pages = {100315}, year = {2022}, abstract = {We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality.}, language = {en} } @inproceedings{GamrathReutherSchlechteetal.2021, author = {Gamrath, Gerwin and Reuther, Markus and Schlechte, Thomas and Swarat, Elmar}, title = {An LP-based heuristic for Inspector Scheduling}, volume = {1}, booktitle = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021: Volume I}, pages = {77 -- 86}, year = {2021}, abstract = {We present a heuristic based on linear programming (LP) for the integrated tour and crew roster planning of toll enforcement inspectors. Their task is to enforce the proper paying of a distance-based toll on German motorways. This leads to an integrated tour planning and duty rostering problem; it is called Toll Enforcement Problem (TEP). We tackle the TEP by a standard multi-commodity flow model with some extensions in order to incorporate the control tours. The heuristic consists of two variants. The first, called Price \& Branch, is a column generation approach to solve the model's LP relaxation by pricing tour and roster arc variables. Then, we compute an integer feasible solution by restricting to all variables that were priced. The second is a coarse-to-fine approach. Its basic idea is projecting variables to an aggregated variable space, which is much smaller. The aim is to spend as much algorithmic effort in this coarse model as possible. For both heuristic procedures we will show that feasible solutions of high quality can be computed even for large scale industrial instances.}, language = {en} }