@inproceedings{SchadeSchlechteWitzig, author = {Schade, Stanley and Schlechte, Thomas and Witzig, Jakob}, title = {Structure-based Decomposition for Pattern-Detection for Railway Timetables}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-89920-6_95}, pages = {715 -- 721}, abstract = {We consider the problem of pattern detection in large scale railway timetables. This problem arises in rolling stock optimization planning in order to identify invariant sections of the timetable for which a cyclic rotation plan is adequate. We propose a dual reduction technique which leads to an decomposition and enumeration method. Computational results for real world instances demonstrate that the method is able to produce optimal solutions as fast as standard MIP solvers.}, language = {en} } @inproceedings{SchadeStrehler, author = {Schade, Stanley and Strehler, Martin}, title = {The Maximum Flow Problem for Oriented Flows}, series = {16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)}, volume = {54}, booktitle = {16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016)}, editor = {Goerigk, Marc and Werneck, Renato}, publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik}, address = {Dagstuhl, Germany}, isbn = {978-3-95977-021-7}, issn = {2190-6807}, doi = {10.4230/OASIcs.ATMOS.2016.7}, url = {http://nbn-resolving.de/urn:nbn:de:0030-drops-65318}, pages = {1 -- 13}, abstract = {In several applications of network flows, additional constraints have to be considered. In this paper, we study flows, where the flow particles have an orientation. For example, cargo containers with doors only on one side and train coaches with 1st and 2nd class compartments have such an orientation. If the end position has a mandatory orientation, not every path from source to sink is feasible for routing or additional transposition maneuvers have to be made. As a result, a source-sink path may visit a certain vertex several times. We describe structural properties of optimal solutions, determine the computational complexity, and present an approach for approximating such flows.}, language = {en} }