@misc{GleixnerBertholdMuelleretal.2016, author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, year = {2016}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{VigerskeGleixner2016, author = {Vigerske, Stefan and Gleixner, Ambros}, title = {SCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1335312}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59377}, year = {2016}, abstract = {This paper describes the extensions that were added to the constraint integer programming framework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinear programs (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithm based on a linear outer-approximation, which is computed by convex over- and underestimation of nonconvex functions. An expression graph representation of nonlinear constraints allows for bound tightening, structure analysis, and reformulation. Primal heuristics are employed throughout the solving process to find feasible solutions early. We provide insights into the performance impact of individual MINLP solver components via a detailed computational study over a large and heterogeneous test set.}, language = {en} } @inproceedings{D'AndreagiovanniGleixner2016, author = {D'Andreagiovanni, Fabio and Gleixner, Ambros}, title = {Towards an accurate solution of wireless network design problems}, booktitle = {Cerulli R., Fujishige S., Mahjoub A. (eds) Combinatorial Optimization. ISCO 2016}, doi = {10.1007/978-3-319-45587-7_12}, pages = {135 -- 147}, year = {2016}, abstract = {The optimal design of wireless networks has been widely studied in the literature and many optimization models have been proposed over the years. However, most models directly include the signal-to-interference ratios representing service coverage conditions. This leads to mixed-integer linear programs with constraint matrices containing tiny coefficients that vary widely in their order of magnitude. These formulations are known to be challenging even for state-of-the-art solvers: the standard numerical precision supported by these solvers is usually not sufficient to reliably guarantee feasible solutions. Service coverage errors are thus commonly present. Though these numerical issues are known and become evident even for small-sized instances, just a very limited number of papers has tried to tackle them, by mainly investigating alternative non-compact formulations in which the sources of numerical instabilities are eliminated. In this work, we explore a new approach by investigating how recent advances in exact solution algorithms for linear and mixed-integer programs over the rational numbers can be applied to analyze and tackle the numerical difficulties arising in wireless network design models.}, language = {en} } @misc{WitzigBertholdHeinz2016, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, year = {2016}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @misc{CheungGleixnerSteffy2016, author = {Cheung, Kevin K. H. and Gleixner, Ambros and Steffy, Daniel}, title = {Verifying Integer Programming Results}, issn = {1438-0064}, doi = {10.1007/978-3-319-59250-3_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61044}, year = {2016}, abstract = {Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates.}, language = {en} } @misc{GamrathFischerGallyetal.2016, author = {Gamrath, Gerald and Fischer, Tobias and Gally, Tristan and Gleixner, Ambros and Hendel, Gregor and Koch, Thorsten and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Vigerske, Stefan and Weninger, Dieter and Winkler, Michael and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 3.2}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57675}, year = {2016}, abstract = {The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.}, language = {en} } @misc{GottwaldMaherShinano2016, author = {Gottwald, Robert Lion and Maher, Stephen J. and Shinano, Yuji}, title = {Distributed domain propagation}, issn = {1438-0064}, doi = {10.4230/LIPIcs.SEA.2017.6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61380}, year = {2016}, abstract = {Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it's simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after a variables domain has been reduced. This paper investigates the impact of distributed domain propagation in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers.}, language = {en} } @article{GleixnerSteffyWolter2016, author = {Gleixner, Ambros and Steffy, Daniel and Wolter, Kati}, title = {Iterative Refinement for Linear Programming}, volume = {28}, journal = {INFORMS Journal on Computing}, number = {3}, doi = {10.1287/ijoc.2016.0692}, pages = {449 -- 464}, year = {2016}, abstract = {We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification of the objective function, right-hand side, and variable bounds. Exact computation is used to compute and store the exact representation of the transformed problems, while numeric computation is used for solving LPs. At all steps of the algorithm the LP bases encountered in the transformed problems correspond directly to LP bases in the original problem description. We show that this algorithm is effective in practice for computing extended precision solutions and that it leads to a direct improvement of the best known methods for solving LPs exactly over the rational numbers. Our implementation is publically available as an extension of the academic LP solver SoPlex.}, language = {en} } @misc{BertholdHendelKoch2016, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, year = {2016}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} }