@misc{BertholdWitzig2020, author = {Berthold, Timo and Witzig, Jakob}, title = {Conflict Analysis for MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78964}, year = {2020}, abstract = {The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality.}, language = {en} } @misc{WitzigBerthold2019, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict-Free Learning for Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-030-58942-4_34}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75338}, year = {2019}, abstract = {Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set.}, language = {en} } @inproceedings{WitzigBerthold2020, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict-Free Learning for Mixed Integer Programming}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2020}, number = {12296}, publisher = {Springer, Cham.}, doi = {10.1007/978-3-030-58942-4_34}, pages = {521 -- 530}, year = {2020}, abstract = {Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set.}, language = {en} } @inproceedings{BertholdGleixner2013, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover Branching}, volume = {7933}, booktitle = {Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013, Proceedings}, editor = {Bonifaci, Vincenzo and Demetrescu, Camil and Marchetti-Spaccamela, Alberto}, doi = {10.1007/978-3-642-38527-8_20}, pages = {212 -- 223}, year = {2013}, abstract = {In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.}, language = {en} } @misc{BertholdGamrathSalvagnin2019, author = {Berthold, Timo and Gamrath, Gerald and Salvagnin, Domenico}, title = {Exploiting Dual Degeneracy in Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73028}, year = {2019}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 \% on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 \% on average.}, language = {en} } @misc{WitzigBertholdHeinz2019, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Computational Aspects of Infeasibility Analysis in Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74962}, year = {2019}, abstract = {The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress.}, language = {en} } @misc{GleixnerBertholdMuelleretal.2016, author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, year = {2016}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{BertholdGleixner2012, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover: a primal MINLP heuristic exploring a largest sub-MIP}, issn = {1438-0064}, doi = {10.1007/s10107-013-0635-2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14631}, number = {12-07}, year = {2012}, abstract = {We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.}, language = {en} } @inproceedings{WitzigBertholdHeinz2019, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_6}, pages = {84 -- 94}, year = {2019}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @inproceedings{BertholdStuckeyWitzig2019, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_5}, pages = {67 -- 83}, year = {2019}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @article{GamrathBertholdHeinzetal.2019, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, volume = {11}, journal = {Mathematical Programming Computation}, number = {4}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {10.1007/s12532-019-00159-1}, pages = {675 -- 702}, year = {2019}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 \% of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @misc{BertholdStuckeyWitzig2018, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71190}, year = {2018}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @misc{WitzigBertholdHeinz2018, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71170}, year = {2018}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @article{GleixnerHendelGamrathetal.2021, author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, year = {2021}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @inproceedings{BertholdGleixner2010, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover - a primal heuristic for MINLP based on sub-MIPs generated by set covering}, booktitle = {Proceedings of the European Workshop on Mixed Integer Nonlinear Programming, April 12-16, 2010, Marseilles, France}, editor = {Bonami, Pierre and Liberti, Leo and Miller, Andrew J. and Sartenaer, Annick}, pages = {103 -- 112}, year = {2010}, abstract = {We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib.}, language = {en} } @misc{BertholdGleixner2009, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover - a primal heuristic for MINLP based on sub-MIPs generated by set covering}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11632}, number = {09-40}, year = {2009}, abstract = {We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib.}, language = {en} } @misc{BertholdGleixnerHeinzetal.2013, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {Analyzing the computational impact of MIQCP solver components}, issn = {1438-0064}, doi = {10.3934/naco.2012.2.739}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17754}, year = {2013}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @misc{BertholdGleixner2013, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover Branching}, issn = {1438-0064}, doi = {10.1007/978-3-642-38527-8_20}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18030}, year = {2013}, abstract = {In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.}, language = {en} } @misc{BertholdGleixnerHeinzetal.2011, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {On the computational impact of MIQCP solver components}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11998}, number = {11-01}, year = {2011}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @incollection{GamrathBertholdHeinzetal.2015, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-Based Primal Heuristics for Mixed Integer Programming}, volume = {13}, booktitle = {Optimization in the Real World}, publisher = {Springer Japan}, isbn = {978-4-431-55419-6}, doi = {10.1007/978-4-431-55420-2_3}, pages = {37 -- 53}, year = {2015}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @misc{WitzigBertholdHeinz2016, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, year = {2016}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @article{KochAchterbergAndersenetal.2011, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, volume = {3}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-011-0025-9}, pages = {103 -- 163}, year = {2011}, language = {en} } @inproceedings{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, booktitle = {Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming}, pages = {165 -- 192}, year = {2012}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @article{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {Analyzing the computational impact of MIQCP solver components}, volume = {2}, journal = {Numerical Algebra, Control and Optimization}, number = {4}, doi = {10.3934/naco.2012.2.739}, pages = {739 -- 748}, year = {2012}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @inproceedings{HendelBertholdAchterberg2011, author = {Hendel, Gregor and Berthold, Timo and Achterberg, Tobias}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, booktitle = {Operations Research Proceedings 2011}, pages = {71 -- 76}, year = {2011}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @article{BertholdGleixner2014, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover: a primal MINLP heuristic exploring a largest sub-MIP}, volume = {144}, journal = {Mathematical Programming}, number = {1-2}, doi = {10.1007/s10107-013-0635-2}, pages = {315 -- 346}, year = {2014}, abstract = {We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.}, language = {en} } @misc{GamrathMelchioriBertholdetal.2015, author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on multi-aggregated variables}, issn = {1438-0064}, doi = {10.1007/978-3-319-18008-3_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53829}, year = {2015}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @article{GleixnerBertholdMuelleretal.2017, author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, volume = {67}, journal = {Journal of Global Optimization}, number = {4}, doi = {10.1007/s10898-016-0450-4}, pages = {731 -- 757}, year = {2017}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15598}, year = {2012}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @misc{KochAchterbergAndersenetal.2010, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, doi = {10.1007/s12532-011-0025-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12953}, number = {10-31}, year = {2010}, abstract = {This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic.}, language = {en} } @misc{BertholdGamrathGleixneretal.2012, author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, year = {2012}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @article{BertholdHendelKoch2017, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {From feasibility to improvement to proof: three phases of solving mixed-integer programs}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2017.1392519}, pages = {499 -- 517}, year = {2017}, abstract = {Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.}, language = {en} } @inproceedings{GamrathMelchioriBertholdetal.2015, author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on Multi-aggregated Variables}, volume = {9075}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015}, doi = {10.1007/978-3-319-18008-3_10}, pages = {141 -- 156}, year = {2015}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @article{BertholdHendel2014, author = {Berthold, Timo and Hendel, Gregor}, title = {Shift-and-Propagate}, volume = {21}, journal = {Journal of Heuristics}, number = {1}, doi = {10.1007/s10732-014-9271-0}, pages = {73 -- 106}, year = {2014}, abstract = {In recent years, there has been a growing interest in the design of general purpose primal heuristics for use inside complete mixed integer programming solvers. Many of these heuristics rely on an optimal LP solution, which may take a significant amount of time to find. In this paper, we address this issue by introducing a pre-root primal heuristic that does not require a previously found LP solution. This heuristic, named Shift-and-Propagate , applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement to existing rounding and propagation heuristics.}, language = {en} } @misc{GamrathBertholdHeinzetal.2015, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-based primal heuristics for mixed integer programming}, issn = {1438-0064}, doi = {http://dx.doi.org/10.1007/978-4-431-55420-2_3}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55518}, year = {2015}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @misc{GamrathBertholdHeinzetal.2017, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, issn = {1438-0064}, doi = {10.1007/s12532-019-00159-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65387}, year = {2017}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @misc{BertholdHendelKoch2016, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, year = {2016}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} }