@misc{TateiwaShinanoYasudaetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yasuda, Masaya and Kaji, Shizuo and Yamamura, Keiichiro and Fujisawa, Katsuki}, title = {Massively parallel sharing lattice basis reduction}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85209}, year = {2021}, abstract = {For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments.}, language = {en} } @misc{HosodaMaherShinanoetal.2023, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89700}, year = {2023}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @misc{FujiiItoKimetal.2021, author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {Solving Challenging Large Scale QAPs}, issn = {1438-0064}, doi = {10.12752/8130}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81303}, year = {2021}, abstract = {We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors' group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.}, language = {en} } @misc{FujiiKimKojimaetal.2023, author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93072}, year = {2023}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with 1.0\% gap is shown to be still quite difficult.}, language = {en} } @misc{FujiiItoKimetal.2022, author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {大規模二次割当問題への挑戦}, journal = {統計数理研究所共同研究リポート 453 最適化:モデリングとアルゴリズム33 2022年3月 「大規模二次割当問題への挑戦」 p.84-p.92}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86779}, year = {2022}, abstract = {二次割当問題は線形緩和が弱いことが知られ,強化のため多様な緩和手法が考案されているが,その一つである二重非負値計画緩和( DNN 緩和)及びその解法として近年研究が進んでいるニュートン・ブラケット法を紹介し,それらに基づく分枝限定法の実装及び数値実験結果について報告する.}, language = {ja} } @misc{Shinano2021, author = {Shinano, Yuji}, title = {UG - Ubiquity Generator Framework v1.0.0beta}, doi = {10.12752/8521}, year = {2021}, abstract = {UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. v1.0.0: new documentation and cmake, generalization of ug framework, implementation of selfsplitrampup for fiber- and parascip, better memory and time limit handling.}, language = {en} } @misc{GamrathAndersonBestuzhevaetal.2020, author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, year = {2020}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @article{YokoyamaKamadaShinanoetal.2021, author = {Yokoyama, Ryohei and Kamada, Hiroki and Shinano, Yuji and Wakui, Tetsuya}, title = {A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model}, volume = {229}, journal = {Energy}, doi = {https://doi.org/10.1016/j.energy.2021.120343}, year = {2021}, abstract = {In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.}, language = {en} } @article{FujiiKimKojimaetal.2024, author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An exceptionally difficult binary quadratic optimization problem with symmetry: a challenge for the largest unsolved QAP instance Tai256c}, journal = {Optimization Letters}, publisher = {Springer Science and Business Media LLC}, issn = {1862-4472}, doi = {10.1007/s11590-024-02157-2}, year = {2024}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. Despite this difficulty, it is imperative to decrease the gap in order to ultimately solve the BQOP exactly. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the orbit branching and the isomorphism pruning. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with gap is shown to be still quite difficult.}, language = {en} } @article{HosodaMaherShinanoetal.2024, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, volume = {165}, journal = {Computers \& Operations Research}, publisher = {Elsevier BV}, issn = {0305-0548}, doi = {10.1016/j.cor.2024.106570}, year = {2024}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @article{YokoyamaTakeuchiShinanoetal.2021, author = {Yokoyama, Ryohei and Takeuchi, Kotaro and Shinano, Yuji and Wakui, Tetsuya}, title = {Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method}, volume = {228}, journal = {Energy}, doi = {https://doi.org/10.1016/j.energy.2021.120505}, year = {2021}, abstract = {The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. The methods of clustering periods by the order of time series, by the k-medoids method, and based on an operational strategy are applied for the model reduction. As a case study, the multiobjective optimal design of a gas turbine cogeneration system is investigated by adopting the annual total cost and primary energy consumption as the objective functions, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function, but that the model reduction only by the k-medoids method is effective very limitedly when importance is given to minimizing the second objective function.}, language = {en} } @article{BertholdKochShinano2021, author = {Berthold, Timo and Koch, Thorsten and Shinano, Yuji}, title = {MILP. Try. Repeat.}, volume = {2}, journal = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, year = {2021}, language = {en} } @misc{HosodaMaherShinanoetal.2021, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {Location, transshipment and routing: An adaptive transportation network integrating long-haul and local vehicle routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83438}, year = {2021}, abstract = {The routing of commodities is a tactical problem in supply chain management that aims to synchronise transportation services connecting a network of warehouses and consolidation locations. This paper considers the routing of commodities in a transportation network that is flexible in response to demand through changes to regional warehouse clustering and the designation of consolidation locations. Traditionally, warehouse clustering and consolidation locations are determined as part of strategic planning that is performed months to years in advance of operations---limiting the flexibility in transportation networks to respond to changes in demand. A mathematical programming-based algorithmic framework is proposed to integrate the strategic decisions of location planning with tactical decisions of vehicle routing and synchronisation. A multi-armed bandit problem is developed to explore warehouse clustering decisions and exploit those that lead to small transportation costs. An extensive computational study will show that the proposed algorithmic framework effectively integrates strategic and tactical planning decisions to reduce the overall transportation costs.}, language = {en} } @misc{TateiwaShinanoYamamuraetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yamamura, Keiichiro and Yoshida, Akihiro and Kaji, Shizuo and Yasuda, Masaya and Fujisawa, Katsuki}, title = {CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82802}, year = {2021}, abstract = {Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.}, language = {en} } @misc{MaherRalphsShinano2019, author = {Maher, Stephen J. and Ralphs, Ted and Shinano, Yuji}, title = {Assessing the Effectiveness of (Parallel) Branch-and-bound Algorithms}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74702}, year = {2019}, abstract = {Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-bound algorithms. The complexity of such implementations makes empirical study difficult for a wide variety of reasons. Various attempts have been made to develop and codify a set of standard techniques for the assessment of optimization algorithms and their software implementations; however, most previous work has been focused on classical sequential algorithms. Since parallel computation has become increasingly mainstream, it is necessary to re-examine and modernize these practices. In this paper, we propose a framework for assessment based on the notion that resource consumption is at the heart of what we generally refer to as the "effectiveness" of an implementation. The proposed framework carefully distinguishes between an implementation's baseline efficiency, the efficacy with which it utilizes a fixed allocation of resources, and its scalability, a measure of how the efficiency changes as resources (typically additional computing cores) are added or removed. Efficiency is typically applied to sequential implementations, whereas scalability is applied to parallel implementations. Efficiency and scalability are both important contributors in determining the overall effectiveness of a given parallel implementation, but the goal of improved efficiency is often at odds with the goal of improved scalability. Within the proposed framework, we review the challenges to effective evaluation and discuss the strengths and weaknesses of existing methods of assessment.}, language = {en} } @misc{ShinanoRehfeldtGalley2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Galley, Tristan}, title = {An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72804}, year = {2019}, abstract = {Branch-and-bound (B\&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B\&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.}, language = {en} } @inproceedings{ShinanoRehfeldtKoch2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores}, volume = {11494}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_35}, pages = {529 -- 539}, year = {2019}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively parallel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best-known solutions to instances from the benchmark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been considerably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @inproceedings{ShinanoRehfeldtGally2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Gally, Tristan}, title = {An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries}, booktitle = {Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and Optimization}, publisher = {IEEE}, doi = {10.1109/IPDPSW.2019.00095}, pages = {530 -- 541}, year = {2019}, abstract = {Branch-and-bound (B\&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B\&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.}, language = {en} } @inproceedings{RehfeldtShinanoKoch2021, author = {Rehfeldt, Daniel and Shinano, Yuji and Koch, Thorsten}, title = {SCIP-Jack: An exact high performance solver for Steiner tree problems in graphs and related problems}, booktitle = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, publisher = {Springer}, doi = {10.1007/978-3-030-55240-4_10}, year = {2021}, abstract = {The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-JACK has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-JACK is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-JACK and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality.}, language = {en} } @article{MunguiaOxberryRajanetal.2019, author = {Munguia, Lluis-Miquel and Oxberry, Geoffrey and Rajan, Deepak and Shinano, Yuji}, title = {Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs}, journal = {Computational Optimization and Applications}, doi = {10.1007/s10589-019-00074-0}, year = {2019}, abstract = {PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch \& Bound (B\&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B\&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B\&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.}, language = {en} } @inproceedings{KochRehfeldtShinano2025, author = {Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {On the state of QUBO solving}, booktitle = {Operations Research Proceedings 2023. OR 2023}, publisher = {Springer}, doi = {10.1007/978-3-031-58405-3_46}, pages = {357 -- 365}, year = {2025}, abstract = {It is regularly claimed that quantum computers will bring breakthrough progress in solving challenging combinatorial optimization problems relevant in practice. In particular, Quadratic Unconstrained Binary Optimization (QUBO) problems are said to be the model of choice for use in (adiabatic) quantum systems during the noisy intermediate- scale quantum (NISQ) era. Even the first commercial quantum-based systems are advertised to solve such problems. Theoretically, any Integer Program can be converted into a QUBO. In practice, however, there are some caveats, as even for problems that can be nicely modeled as a QUBO, this might not be the most effective way to solve them. We review the state of QUBO solving on digital and quantum computers and provide insights regarding current benchmark instances and modeling.}, language = {en} } @inproceedings{TateiwaShinanoYamamuraetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yamamura, Keiichiro and Yoshida, Akihiro and Kaji, Shizuo and Yasuda, Masaya and Fujisawa, Katsuki}, title = {CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems}, booktitle = {HiPC 2021 proceedings}, year = {2021}, abstract = {Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.}, language = {en} } @misc{GleixnerEiflerGallyetal.2017, author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, year = {2017}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @inproceedings{YokoyamaShinanoWakayamaaetal.2018, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakayamaa, Yuji and Wakui, Tetsuya}, title = {Optimal Design of a Gas Turbine Cogeneration Plant by a Hierarchical Optimization Method With Parallel Computing}, volume = {3}, booktitle = {ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition}, year = {2018}, abstract = {To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) approaches have been applied widely to such optimal design problems. The authors have proposed a MILP method utilizing the hierarchical relationship between design and operation variables to solve the optimal design problems of energy supply systems efficiently. In addition, some strategies to enhance the computation efficiency have been adopted: bounding procedures at both the levels and ordering of the optimal operation problems at the lower level. In this paper, as an additional strategy to enhance the computation efficiency, parallel computing is adopted to solve multiple optimal operation problems in parallel at the lower level. In addition, the effectiveness of each and combinations of the strategies adopted previously and newly is investigated. This hierarchical optimization method is applied to an optimal design of a gas turbine cogeneration plant, and its validity and effectiveness are clarified through some case studies.}, language = {en} } @inproceedings{YokoyamaShinanoWakayamaetal.2018, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakayama, Yuki and Wakui, Tetsuya}, title = {Model Reduction by Time Aggregation for Optimal Design of Energy Supply Systems by an MILP Hierarchical Branch and Bound Method}, booktitle = {Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2018)}, year = {2018}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems effi- ciently. An original problem has been solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of one another at the lower level. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. In this paper, a method of reducing model by time aggregation is proposed as a novel strategy to search design candidates efficiently in the relaxed optimal design problem at the upper level. In addition, the previous strategies are modified in accordance with the novel strategy. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solu- tion. The method can decrease the number of design variables and constraints at the upper level, and thus may decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency in comparison and combination with the modified previous strategies.}, language = {en} } @misc{ShinanoAchterbergBertholdetal.2015, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, year = {2015}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{MunguiaOxberryRajanetal.2017, author = {Munguia, Lluis-Miquel and Oxberry, Geoffrey and Rajan, Deepak and Shinano, Yuji}, title = {Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs}, number = {ZIB-Report 17-58}, issn = {1438-0064}, doi = {10.1007/s10589-019-00074-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65517}, year = {2017}, abstract = {PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch \& Bound (B\&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B\&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B\&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.}, language = {en} } @misc{ShinanoRehfeldtKoch2018, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71118}, year = {2018}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @article{GleixnerHendelGamrathetal.2021, author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, year = {2021}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @article{ShinanoAchterbergBertholdetal.2013, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Vigerske, Stefan and Winkler, Michael}, title = {制約整数計画ソルバ SCIP の並列化}, volume = {61}, journal = {統計数理}, number = {1}, pages = {47 -- 78}, year = {2013}, abstract = {制約整数計画(CIP: Constraint Integer Programs)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming),充足可能性問題(SAT: Satisfability Problem)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP(Solving Constraint Integer Programs)は,CIP を解くソルバとして実装され,Zuse Institute Berlin(ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発された SCIP に対する2 種類の並列化拡張を紹介する.一つは,複数計算ノード間で大規模に並列動作する ParaSCIPである.もう一つは,複数コアと共有メモリを持つ 1 台の計算機上で(スレッド)並列で動作する FiberSCIP である.ParaSCIP は,HLRN II スーパーコンピュータ上で,一つのインスタンスを解くために最大 7,168 コアを利用した動作実績がある.また,統計数理研究所の Fujitsu PRIMERGY RX200S5 上でも,最大 512 コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5 上では,これまでに最適解が得られていなかった MIPLIB2010のインスタンスである dg012142 に最適解を与えた.}, language = {ja} } @article{品野2014, author = {品野, 勇治}, title = {最適化研究における数値実験を中心とした アプリケーション駆動研究サイクル}, volume = {59}, journal = {機関誌「オペレーションズ・リサーチ」}, number = {5}, pages = {247 -- 253}, year = {2014}, abstract = {最適化研究におけるアプリケーション駆動研究サイクルを紹介する.アプリケーション駆動研究サイクルは,学術機関での研究と企業における研究成果の利用とのつながりを良くする点では優れている.一方で,ソフトウェア開発・維持に多大な労力を要するため,日本の大学や研究機関における実施には困難さが伴う.ZIBにおいてアプリケーション駆動研究サイクルが,比較的うまく機能している背景を説明する.また,日本においてアプリケーション駆動研究サイクルを活性化するための第一歩として,論文投稿時に,論文中の数値実験に利用した全データ提出の義務化を提案したい.}, language = {ja} } @article{藤澤品野2014, author = {藤澤, 克樹 and 品野, 勇治}, title = {最適化と計算の今後 ―大規模問題をどこまで解決できるのか?―}, volume = {59}, journal = {機関誌「オペレーションズ・リサーチ」}, number = {1}, pages = {11 -- 19}, year = {2014}, abstract = {近年,大規模かつ複雑な最適化問題を高速に解く需要はさまざまな産業界や学術分野において急速に高まりつつある.これからの研究においては最先端理論 (Theory)+超大規模実データ (Practice)+最新計算技術(Computation) の三つを有機的に組み合わせることによって,実用に耐えうる解決策の提示と大規模最適化問題を扱う際の先例となることが求められている.本稿では最適化と計算に関する最新の傾向に触れるとともに,最適化の計算の今後についても考えていきたい.}, language = {ja} } @article{WakayamaYokoyamaShinanoetal.2018, author = {Wakayama, Yuki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(時間集約によるモデル縮約とその効果)}, journal = {エネルギー・資源学会第34回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {401 -- 404}, year = {2018}, abstract = {A hierarchical mixed-integer linear programming method to solve optimal design problems of energy supply systems efficiently has been proposed. The original problem is solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of each other at the lower level. In this paper, a method of reducing model by time aggregation is proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. On one hand, the method may decrease the number of design variables and costraints at the upper level, and thus the computation time at the upper level. On the other hand, it may increase the numbers of generated design solution candidates and solved optimal operation problems, and thus the computation time at both the levels. Though a case study on the optimal design of a cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency.}, language = {ja} } @article{TaniguchiYokoyamaShinanoetal.2015, author = {Taniguchi, Shusuke and Yokoyama, Ryohei and Shinano, Yuji and Ohkura, Masashi and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(多目的最適化におけるK-ベスト解の探索)}, journal = {エネルギー・資源学会第31回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {267 -- 272}, year = {2015}, abstract = {A mixed-integer linear programming method utilizing the hierarchical relationship between design and operation variables proposed to solve the optimal design problem of energy supply systems efficiently is extended to search K-best solutions in multiobjective optimization: At the upper level, the optimal values of design variables are searched by the branch and bound method with operation variables relaxed to continuous ones; At the lower level, the values of operation variables are optimized independently at the respective periods set for variations in energy demands by the branch and bound method with the values of design variables given tentatively during the search at the upper level. A weighting method is employed for multiobjective optimization, and a weighted sum of the annual total cost and primary energy consumption is adopted as the objective function to be minimized. A practical case study on the optimal design of a cogeneration system is conducted. The validity and effectiveness of the proposed method are clarified, and the trade-off relationship between the annual total cost and primary energy consumption is confirmed.}, language = {ja} } @article{TakeuchiYokoyamaShinanoetal.2019, author = {Takeuchi, Kotaro and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの 設計と運用の階層的関係を考慮した最適化 (運用を考慮した期間クラスタリングによるモデル縮約)}, journal = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {169 -- 174}, year = {2019}, abstract = {To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such multi-period optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods has also been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, by utilizing features of the hierarchical MILP method, a method of clustering periods is proposed based on the optimal operational strategies of energy supply systems obtained by solving the relaxed optimal design problem. As a case study, the method is applied to the optimal design of a gas turbine cogeneration system, and it is clarified that the method is effective to enhance the computation efficiency in comparison with a conventional method of clustering periods regularly.}, language = {ja} } @article{KamadaYokoyamaShinanoetal.2019, author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {混合整数線形モデルによる エネルギー供給システムのロバスト最適設計 (階層的最適化手法の適用)}, journal = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {163 -- 168}, year = {2019}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, mixed-integer linear programming method in consideration of the hierarchical relationship between design and operation variables is applied to parts of the robust optimal design method which take long computation times to solve problems efficiently. In a case study, this revised method is applied to the robust optimal design of a cogeneration system with a simple configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{YokoyamaShinanoTaniguchietal.2014, author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の階層的関係を考慮した最適化(手法の提案)}, journal = {第33回エネルギー・資源学会研究発表会講演論文要旨集・講演論文集}, pages = {183 -- 188}, year = {2014}, abstract = {A mixed-integer linear programming (MILP) method utilizing the hierarchical relationship between design and op- eration variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified.}, language = {ja} } @article{YokoyamaShinanoTaniguchietal.2014, author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用階層的関係を考慮した最適化(K-ベスト解の探索)}, journal = {日本機械学会第11回最適化シンポジウム2014講演論文集}, pages = {1 -- 4}, year = {2014}, abstract = {A mixed-integer linear programming methodutilizing the hierarchical relationship between design and operation variables proposed ot solve the optimal design problem of energy supply systems efficiently is extended ot search K-best solutions: At the upper level, the optimal values ofdesign variables are searched with operation variables relaxed to continuous ones; At the lower level, the values of operation variables are optimized with the values of design variables given tentatively; The obtained solution is used to renew K-best incumbent solutions, and the upper bound for the value of the objective function for K-best solutions is replaced correspondingly. A practical case study is conducted, and the validity and effectiveness of the proposed method are clarified.}, language = {ja} } @article{WakayamaYokoyamaShinanoetal.2018, author = {Wakayama, Yuki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化によるエネルギ ー供給システムの最適設計・運用 (期間のクラスタリングに よるモデル縮約とその効果)}, journal = {日本機械学会関西支部第93期定時総会講演会講演論文集}, pages = {259 -- 260}, year = {2018}, abstract = {Ahierarchical mixed-integer linear programmingmethod has been proposed to solve optimal design problems of energy supply systems efficiently. In this paper, a method of reducing model by clustering periods is proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Through acase study on the optimaldesign of a cogeneration system, ti is clarified how the model reduction si effective ot enhance the computation efficiency.}, language = {ja} } @article{YokoyamaShinanoTakeuchietal.2019, author = {Yokoyama, Ryohei and Shinano, Yuji and Takeuchi, Kotaro and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (モデル縮約のための期間クラスタリング手法の比較)}, journal = {第38回エネルギー・資源学会研究発表会講演論文集}, pages = {109 -- 114}, year = {2019}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, three clustering methods are applied to time aggregation and compared with one another in terms of the computation efficiency. Especially, the k-medoids method is applied newly in addition to the time-series and operation-based methods applied previously. A case study is conducted on the optimal design of a gas turbine cogeneration system for district energy supply. Through the study, it turns out the k-medoids method is effective to shorten the computation time as compared with the time-series method, although it is necessary to set the number of clusters artifically in both the methods. It also turns out that the operation-based method is more effective than the k-medoids method in terms of the computation efficiency even with the number of clusters set automatically.}, language = {ja} } @article{TakeuchiYokoyamaShinanoetal.2020, author = {Takeuchi, Kotaro and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの 設計および運用の階層的関係を考慮した最適化 (多目的最適設計へのモデル縮約の適用)}, journal = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {724 -- 729}, year = {2020}, abstract = {To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. Mixed-integer linear programming (MILP) methods have been applied widely to such optimal design problems. A hierarchical MILP method has been proposed to solve the problems very efficiently. In addition, by utilizing features of the hierarchical MILP method, a method of reducing model by clustering periods based on the optimal operational strategies of equipment has been proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, these methods are applied to the multiobjective optimal design of a cogeneration system by considering the annual total cost and primary energy consumption as the objective functions to be minimized. Through a case study, it turns out that the model reduction by the operation-based time-period clustering is effective in terms of the computation efficiency when importance is given to the first objective function, while it is not when importance is given to the second objective function.}, language = {ja} } @article{YokoyamaShinanoWakui2021, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の 階層的関係を考慮した最適化 (蓄エネルギー機器を有するシステムへの適用)}, journal = {第40回エネルギー・資源学会研究発表会講演論文集}, pages = {398 -- 403}, year = {2021}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. As one of the strategies, a method of reducing model by time aggregation has been proposed to search design candidates efficiently in the relaxed optimal design problem at the upper level. In this paper, the hierarchical MILP method with the strategies has been extendedly applied to the optimal design of energy supply systems with storage units. Especially, the method of re- ducing model is extended by aggregating representative days and sampling times differently in consideration of the characteristics of storage units. A case study is conducted on the optimal design of a gas turbine cogeneration system with a thermal storage unit for district energy supply. Through the study, it turns out the hierarchical MILP method is effective to derive the optimal solution as compared with a conventional method. It also turns out that the model reduction with the special time aggregation is effective to shorten the computation time as compared with that without time aggregation in case that the number of candidates for equipment capacities is relatively small.}, language = {ja} } @article{YokoyamaShinanoWakui2022, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した設計解の評価)}, journal = {エネルギー・資源学会第38回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {468 -- 473}, year = {2022}, abstract = {For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to solve such an optimal design problem with a large number of periods efficiently is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to provide a time aggregation method for deriving aprroximate optimal design solutions and evaluting their values of the objective function. Especially, a method of evaluating design solutions is presented here using both methods of evaluating the robustness under uncertain energy demands and solving optimal design problems by a hierarchical approach. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.}, language = {ja} } @article{YokoyamaShinanoWakui2022, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した近似最適設計)}, journal = {第41回エネルギー・資源学会研究発表会講演論文集}, pages = {144 -- 148}, year = {2022}, abstract = {For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to efficiently solve such an optimal design problem with a large number of periods for variations in energy de- mands is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to propose a time aggregation approach for deriving suitable aprroximate optimal design solutions and evaluting their values of the objective function accurately. This time aggregation approach is realized by combining a robust optimal design method under uncertain energy demands and a hierarchical approach for solving large scale optimal design problems. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective upper and lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.}, language = {ja} } @article{YokoyamaShinanoWakayamaetal.2019, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakayama, Yuki and Wakui, Tetsuya}, title = {Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method}, volume = {181}, journal = {Energy}, pages = {782 -- 792}, year = {2019}, abstract = {Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of en- ergy supply systems in consideration of multi-period operation. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. An original problem has been solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of one another at the lower level. In addition, some strategies have been pro- posed to enhance the computation efficiency furthermore. In this paper, a method of reducing model by time aggregation is proposed as a novel strategy to search design candidates efficiently in the relaxed optimal design problem at the upper level. In addition, the previous strategies are modified in accor- dance with the novel strategy. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Thus, it may decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency in comparison and combination with the modified previous strategies.}, language = {en} } @article{KamadaYokoyamaShinanoetal.2020, author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法の援用による エネルギー供給システムのロバスト最適設計}, journal = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {730 -- 735}, year = {2020}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. Since this problem must be solved by a special algorithm and is too difficult to solve even using a commercial solver, a hierarchical optimization approach has been applied to solve the problem but its application is limited only to small scale toy problems. In this paper, some strategies are introduced into the hierarchical optimization approach to enhance the computation efficiency for the purpose of applying the approach to large scale practical problems. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{TakeuchiYokoyamaShinanoetal.2020, author = {Takeuchi, Kotaro and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {エネルギー供給システムの設計および運用の階層的関係を考慮した最適化 (k-メドイド法に基づく期間クラスタリングの適用)}, journal = {日本機械学会関西支部第95期定時総会講演会講演論文集}, pages = {1 -- 4}, year = {2020}, abstract = {To attain the highest performance of energy supply systems, it is necessary to determine design specifications optimally in consideration of operational strategies corresponding to seasonal and hourly variations in energy demands. A hierarchical mixed-integer linear programming method has been proposed to solve such an optimal design problem efficiently. In this paper, a method of reducing model by clustering periods with the k-medoids method is applied to the relaxed optimal design problem at the upper level. Through a case study, it is clarified how the proposed method is effective to enhance the computation efficiency in a large scale optimal design problem.}, language = {ja} } @article{KamadaYokoyamaShinanoetal.2020, author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法を用いた エネルギー供給システムのロバスト性評価}, journal = {日本機械学会関西支部第95期定時総会講演会講演論文集}, pages = {1 -- 4}, year = {2020}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed-integer linear model for constituent equipment. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, a hierarchical optimization method is applied to two types of optimization problems for evaluating robustness to solve them efficiently. In a case study, the proposed method is applied to a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{YokoyamaShinanoWakui2019, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {Evaluation of Design Alternatives for a Gas Turbine Cogeneration Plant Based on Multiobjective K-Best Solutions}, journal = {International Conference on Power Engineering-2019}, pages = {1112 -- 1117}, year = {2019}, abstract = {To realize the best performance in energy supply, it is an important task to determine types, capacities, and numbers of energy conversion equipment appropriately. It is also necessary to take account of seasonal and hourly variations in energy demands and corresponding operational strategies of equipment. The mixed-integer linear programming (MILP) method has been utilized widely to derive the optimal solution for such a design problem. From the design viewpoint, it is important to generate not only the optimal solution but also suboptimal ones which follow the optimal one without omission, what are called K-best solutions. In this paper, an MILP method utilizing the hierarchical relationship between design and operation variables is applied along with some strategies to efficiently drive K-best solutions of a multiobjective optimal design problem of a gas turbine cogeneration system for district energy supply. The annual total cost and primary energy consumption are adopted as the objective functions to be minimized. A case study is conducted, and K-best solutions with an allowable increase in the value of the combined objective function are derived for each value of the weight for the annual total cost. Through the study, it is clarified how the weight affects the computation time, the number of the K-best solutions, and the design specifications and the values of the objective functions for the K-best solutions.}, language = {en} } @article{YokoyamaHiramatsuShinanoetal.2022, author = {Yokoyama, Ryohei and Hiramatsu, Yuto and Shinano, Yuji and Wakui, Tetsuya}, title = {Evaluation of robustness in multiple performance criteria for designing energy supply systems based on a mixed-integer linear model}, journal = {The 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2022)}, pages = {1937 -- 1948}, year = {2022}, abstract = {In designing energy supply systems, it is important to consider the uncertainty in energy demands, evaluate the robustness in some performance criteria, and heighten the robustness. A robust optimal design method has been previously proposed to maximize the robustness in a single performance criterion against the uncertainty in energy demands based on a mixed-integer linear model. In this paper, as a preliminary step toward multiobjective robust optimal design, a method of evaluating robustness in multiple performance criteria against the uncertainty in energy demands is proposed based on a mixed-integer linear model. The problems of evaluating the robustness in the performance criteria are formulated as bilevel mixed-integer linear programming (MILP) ones. They are solved by evaluating lower and upper bounds for the maximum regrets in the performance criteria alternately and repeatedly with the aid of a solution method based on reformulation and decomposition. In addition, for the purpose of applying the proposed method to practical problems, a hierarchical MILP method is used to efficiently solve some MILP problems in the solution process. Through a case study on a cogeneration system, the robustness in the annual total cost and primary energy consumption is evaluated and its trade-off relationship is clarified. As a result, it turns out how the values of these performance criteria are close to the optimal ones in relation to the uncertainty in energy demands. This work will be an important step toward developing a multiobjective robust optimal design method.}, language = {en} }