@misc{GamrathKochMaheretal.2015, author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54648}, year = {2015}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15598}, year = {2012}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @inproceedings{YokoyamaShinanoTaniguchietal.2015, author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {Generation of multiple best solutions in multiobjective optimal design of energy supply systems}, booktitle = {Proceedings of the 15th International Conference on Power Engineering. ICOPE 2015}, doi = {10.1299/jsmeicope.2015.12._ICOPE-15-_56}, year = {2015}, abstract = {Optimization approaches based on the mixed-integer linear programming (MILP) have been utilized to design energy supply systems. In this paper, an MILP method utilizing the hierarchical relationship between design and operation is extended to search not only the optimal solution but also suboptimal ones which follow the optimal one without any omissions, what are called K-best solutions, efficiently in a multiobjective optimal design problem. At the upper level, the values of design variables for the K-best solutions are searched by the branch and bound method. At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively. Incumbents for the K-best solutions and an upper bound for all the values of the objective function for the K-best solutions are renewed if necessary between both the levels. This method is implemented into a commercial MILP solver. A practical case study on the multiobjective optimal design of a cogeneration system is conducted, and the validity and effectiveness of the method are clarified.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal.2016, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, booktitle = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, doi = {10.1109/IPDPS.2016.56}, year = {2016}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{KochRalphsShinano2011, author = {Koch, Thorsten and Ralphs, Ted and Shinano, Yuji}, title = {What could a million CPUs do to solve Integer Programs?}, issn = {1438-0064}, doi = {10.1007/s00186-012-0390-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14222}, number = {11-40}, year = {2011}, abstract = {Given the steady increase in cores per CPU, it is only a matter of time until supercomputers will have a million or more cores. In this article, we investigate the opportunities and challenges that will arise when trying to utilize this vast computing power to solve a single integer linear optimization problem. We also raise the question of whether best practices in sequential solution of ILPs will be effective in massively parallel environments.}, language = {en} } @misc{BertholdGamrathGleixneretal.2012, author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, year = {2012}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @misc{GamrathKochMaheretal.2016, author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, doi = {10.1007/s12532-016-0114-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60170}, year = {2016}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{GamrathKochRehfeldtetal.2014, author = {Gamrath, Gerald and Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A massively parallel STP solver}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52293}, year = {2014}, abstract = {In this article we describe the impact from embedding a 15 year old model for solving the Steiner tree problem in graphs in a state-of-the-art MIP-Framework, making the result run in a massively parallel environment and extending the model to solve as many variants as possible. We end up with a high-perfomance solver that is capable of solving previously unsolved instances and, in contrast to its predecessor, is freely available for academic research.}, language = {en} } @misc{RalphsShinanoBertholdetal.2016, author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62239}, year = {2016}, abstract = {In this article, we introduce parallel mixed integer linear programming (MILP) solvers. MILP solving algorithms have been improved tremendously in the last two decades. Currently, commercial MILP solvers are known as a strong optimization tool. Parallel MILP solver development has started in 1990s. However, since the improvements of solving algorithms have much impact to solve MILP problems than application of parallel computing, there were not many visible successes. With the spread of multi-core CPUs, current state-of-the-art MILP solvers have parallel implementations and researches to apply parallelism in the solving algorithm also getting popular. We summarize current existing parallel MILP solver architectures.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal.2014, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update}, booktitle = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, editor = {IEEE,}, publisher = {IEEE Computer Society}, address = {Washington, DC, USA}, isbn = {978-1-4799-4117-9}, doi = {10.1109/IPDPSW.2014.174}, pages = {1552 -- 1561}, year = {2014}, language = {en} } @misc{YokoyamaShinanoTaniguchietal.2014, author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation}, issn = {1438-0064}, doi = {10.1016/j.enconman.2014.12.020}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49413}, year = {2014}, abstract = {To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. In the combinatorial optimization method based on the mixed-integer linear programming (MILP), integer variables are used to express the selection, numbers, and on/off status of operation of equipment, and the number of these variables increases with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. In this paper, a MILP method utilizing the hierarchical relationship between design and operation variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified.}, language = {en} } @article{ShinanoInuiFukagawaetal.2013, author = {Shinano, Yuji and Inui, Nobuo and Fukagawa, Youzou and Takakura, Noburu}, title = {Optimizing Movement Sequences for Step-and-Scan Lithography Equipment}, volume = {7}, journal = {Journal of Advanced Mechanical Design, Systems, and Manufacturing}, number = {4}, doi = {10.1299/jamdsm.7.608}, pages = {608 -- 618}, year = {2013}, abstract = {The purpose of this work is to improve the throughput of step-and-scan lithography equipment to shorten the production time of a wafer. For this purpose, we propose a method for solving the MSOP (Movement Sequence Optimization Problem), which is the problem of computing the fastest schedule for visiting all shots on a wafer. It is well-known that the MSOP on step-and-repeat lithography equipment can be modeled as a traveling salesman problem. In contrast to step-and-repeat lithography equipment, a schedule for step-and-scan lithography equipment must also indicate the scanning direction of each shot, in addition to the sequence of the shots. For this reason, the traveling salesman problem formulation for step-and-repeat lithography equipment cannot be applied to solve the MSOP on step-and-scan lithography equipment directly. We overcame this difficulty by introducing auxiliary vertices to model the scanning directions in the traveling salesman problem formulation. By this method, we were able to compute exact optimal sequences considering the scanning directions of shots for several MSOP instances. Our numerical experiments demonstrated that our proposed method was capable of computing exact optimal solutions for real-world MSOP instances having up to 232 shots on a wafer. These optimal solutions gave a 0.25\% to 4.66\% improvement in productivity over solutions computed by previously known methods.}, language = {en} } @misc{BestuzhevaBesanconChenetal.2021, author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, year = {2021}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} } @misc{BolusaniBesanconBestuzhevaetal.2024, author = {Bolusani, Suresh and Besan{\c{c}}on, Mathieu and Bestuzheva, Ksenia and Chmiela, Antonia and Dion{\´i}sio, Jo{\~a}o and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Ghannam, Mohammed and Gleixner, Ambros and Graczyk, Christoph and Halbig, Katrin and Hedtke, Ivo and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Kamp, Dominik and Koch, Thorsten and Kofler, Kevin and Lentz, Jurgen and Manns, Julian and Mexi, Gioni and M{\"u}hmer, Erik and E. Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Turner, Mark and Vigerske, Stefan and Weninger, Dieter and Xu, Liding}, title = {The SCIP Optimization Suite 9.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-95528}, year = {2024}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.}, language = {en} } @article{BestuzhevaBesanconChenetal.2023, author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {Enabling research through the SCIP optimization suite 8.0}, volume = {49}, journal = {ACM Transactions on Mathematical Software}, number = {2}, doi = {10.1145/3585516}, pages = {1 -- 21}, year = {2023}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP's main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP's application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP.}, language = {en} }