@misc{TateiwaShinanoYasudaetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yasuda, Masaya and Kaji, Shizuo and Yamamura, Keiichiro and Fujisawa, Katsuki}, title = {Massively parallel sharing lattice basis reduction}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85209}, year = {2021}, abstract = {For cryptanalysis in lattice-based schemes, the performance evaluation of lattice basis reduction using high-performance computers is becoming increasingly important for the determination of the security level. We propose a distributed and asynchronous parallel reduction algorithm based on randomization and DeepBKZ, which is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm. Randomized copies of a lattice basis are distributed to up to 103,680 cores and independently reduced in parallel, while some basis vectors are shared asynchronously among all processes via MPI. There is a trade-off between randomization and information sharing; if a substantial amount of information is shared, all processes will work on the same problem, thereby diminishing the benefit of parallelization. To monitor this balance between randomness and sharing, we propose a metric to quantify the variety of lattice bases. We empirically find an optimal parameter of sharing for high-dimensional lattices. We demonstrate the efficacy of our proposed parallel algorithm and implementation with respect to both performance and scalability through our experiments.}, language = {en} } @misc{HosodaMaherShinanoetal.2023, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89700}, year = {2023}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @misc{FujiiItoKimetal.2021, author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {Solving Challenging Large Scale QAPs}, issn = {1438-0064}, doi = {10.12752/8130}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81303}, year = {2021}, abstract = {We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors' group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.}, language = {en} } @misc{FujiiKimKojimaetal.2023, author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93072}, year = {2023}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with 1.0\% gap is shown to be still quite difficult.}, language = {en} } @misc{FujiiItoKimetal.2022, author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {大規模二次割当問題への挑戦}, journal = {統計数理研究所共同研究リポート 453 最適化:モデリングとアルゴリズム33 2022年3月 「大規模二次割当問題への挑戦」 p.84-p.92}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86779}, year = {2022}, abstract = {二次割当問題は線形緩和が弱いことが知られ,強化のため多様な緩和手法が考案されているが,その一つである二重非負値計画緩和( DNN 緩和)及びその解法として近年研究が進んでいるニュートン・ブラケット法を紹介し,それらに基づく分枝限定法の実装及び数値実験結果について報告する.}, language = {ja} } @misc{Shinano2021, author = {Shinano, Yuji}, title = {UG - Ubiquity Generator Framework v1.0.0beta}, doi = {10.12752/8521}, year = {2021}, abstract = {UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. v1.0.0: new documentation and cmake, generalization of ug framework, implementation of selfsplitrampup for fiber- and parascip, better memory and time limit handling.}, language = {en} } @misc{GamrathAndersonBestuzhevaetal.2020, author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, year = {2020}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @article{YokoyamaKamadaShinanoetal.2021, author = {Yokoyama, Ryohei and Kamada, Hiroki and Shinano, Yuji and Wakui, Tetsuya}, title = {A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model}, volume = {229}, journal = {Energy}, doi = {https://doi.org/10.1016/j.energy.2021.120343}, year = {2021}, abstract = {In designing energy supply systems, designers should heighten the robustness in performance criteria against the uncertainty in energy demands. In this paper, a robust optimal design method using a hierarchical mixed-integer linear programming (MILP) method is proposed to maximize the robustness of energy supply systems under uncertain energy demands based on a mixed-integer linear model. A robust optimal design problem is formulated as a three-level min-max-min MILP one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering relationships among integer design variables, uncertain energy demands, and integer and continuous operation variables. This problem is solved by evaluating upper and lower bounds for the minimum of the maximum regret of the performance criterion repeatedly outside, and evaluating lower and upper bounds for the maximum regret repeatedly inside. Different types of optimization problems are solved by applying a hierarchical MILP method developed for ordinary optimal design problems without and with its modifications. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system. Through the study, its validity and effectiveness are ascertained, and some features of the obtained robust designs are clarified.}, language = {en} } @article{FujiiKimKojimaetal.2024, author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An exceptionally difficult binary quadratic optimization problem with symmetry: a challenge for the largest unsolved QAP instance Tai256c}, journal = {Optimization Letters}, publisher = {Springer Science and Business Media LLC}, issn = {1862-4472}, doi = {10.1007/s11590-024-02157-2}, year = {2024}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. Despite this difficulty, it is imperative to decrease the gap in order to ultimately solve the BQOP exactly. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the orbit branching and the isomorphism pruning. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with gap is shown to be still quite difficult.}, language = {en} } @article{HosodaMaherShinanoetal.2024, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, volume = {165}, journal = {Computers \& Operations Research}, publisher = {Elsevier BV}, issn = {0305-0548}, doi = {10.1016/j.cor.2024.106570}, year = {2024}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @article{YokoyamaTakeuchiShinanoetal.2021, author = {Yokoyama, Ryohei and Takeuchi, Kotaro and Shinano, Yuji and Wakui, Tetsuya}, title = {Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method}, volume = {228}, journal = {Energy}, doi = {https://doi.org/10.1016/j.energy.2021.120505}, year = {2021}, abstract = {The mixed-integer linear programming (MILP) method has been applied widely to optimal design of energy supply systems. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. In addition, a method of reducing model by time aggregation has been proposed to search design candidates accurately and efficiently at the upper level. In this paper, the hierarchical MILP method and model reduction by time aggregation are applied to the multiobjective optimal design. The methods of clustering periods by the order of time series, by the k-medoids method, and based on an operational strategy are applied for the model reduction. As a case study, the multiobjective optimal design of a gas turbine cogeneration system is investigated by adopting the annual total cost and primary energy consumption as the objective functions, and the clustering methods are compared with one another in terms of the computation efficiency. It turns out that the model reduction by any clustering method is effective to enhance the computation efficiency when importance is given to minimizing the first objective function, but that the model reduction only by the k-medoids method is effective very limitedly when importance is given to minimizing the second objective function.}, language = {en} } @article{BertholdKochShinano2021, author = {Berthold, Timo and Koch, Thorsten and Shinano, Yuji}, title = {MILP. Try. Repeat.}, volume = {2}, journal = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, year = {2021}, language = {en} } @misc{HosodaMaherShinanoetal.2021, author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {Location, transshipment and routing: An adaptive transportation network integrating long-haul and local vehicle routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83438}, year = {2021}, abstract = {The routing of commodities is a tactical problem in supply chain management that aims to synchronise transportation services connecting a network of warehouses and consolidation locations. This paper considers the routing of commodities in a transportation network that is flexible in response to demand through changes to regional warehouse clustering and the designation of consolidation locations. Traditionally, warehouse clustering and consolidation locations are determined as part of strategic planning that is performed months to years in advance of operations---limiting the flexibility in transportation networks to respond to changes in demand. A mathematical programming-based algorithmic framework is proposed to integrate the strategic decisions of location planning with tactical decisions of vehicle routing and synchronisation. A multi-armed bandit problem is developed to explore warehouse clustering decisions and exploit those that lead to small transportation costs. An extensive computational study will show that the proposed algorithmic framework effectively integrates strategic and tactical planning decisions to reduce the overall transportation costs.}, language = {en} } @misc{TateiwaShinanoYamamuraetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yamamura, Keiichiro and Yoshida, Akihiro and Kaji, Shizuo and Yasuda, Masaya and Fujisawa, Katsuki}, title = {CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82802}, year = {2021}, abstract = {Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.}, language = {en} } @misc{MaherRalphsShinano2019, author = {Maher, Stephen J. and Ralphs, Ted and Shinano, Yuji}, title = {Assessing the Effectiveness of (Parallel) Branch-and-bound Algorithms}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74702}, year = {2019}, abstract = {Empirical studies are fundamental in assessing the effectiveness of implementations of branch-and-bound algorithms. The complexity of such implementations makes empirical study difficult for a wide variety of reasons. Various attempts have been made to develop and codify a set of standard techniques for the assessment of optimization algorithms and their software implementations; however, most previous work has been focused on classical sequential algorithms. Since parallel computation has become increasingly mainstream, it is necessary to re-examine and modernize these practices. In this paper, we propose a framework for assessment based on the notion that resource consumption is at the heart of what we generally refer to as the "effectiveness" of an implementation. The proposed framework carefully distinguishes between an implementation's baseline efficiency, the efficacy with which it utilizes a fixed allocation of resources, and its scalability, a measure of how the efficiency changes as resources (typically additional computing cores) are added or removed. Efficiency is typically applied to sequential implementations, whereas scalability is applied to parallel implementations. Efficiency and scalability are both important contributors in determining the overall effectiveness of a given parallel implementation, but the goal of improved efficiency is often at odds with the goal of improved scalability. Within the proposed framework, we review the challenges to effective evaluation and discuss the strengths and weaknesses of existing methods of assessment.}, language = {en} } @misc{ShinanoRehfeldtGalley2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Galley, Tristan}, title = {An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72804}, year = {2019}, abstract = {Branch-and-bound (B\&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B\&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.}, language = {en} } @inproceedings{ShinanoRehfeldtKoch2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores}, volume = {11494}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_35}, pages = {529 -- 539}, year = {2019}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively parallel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best-known solutions to instances from the benchmark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been considerably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @inproceedings{ShinanoRehfeldtGally2019, author = {Shinano, Yuji and Rehfeldt, Daniel and Gally, Tristan}, title = {An Easy Way to Build Parallel State-of-the-art Combinatorial Optimization Problem Solvers: A Computational Study on Solving Steiner Tree Problems and Mixed Integer Semidefinite Programs by using ug[SCIP-*,*]-libraries}, booktitle = {Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and Optimization}, publisher = {IEEE}, doi = {10.1109/IPDPSW.2019.00095}, pages = {530 -- 541}, year = {2019}, abstract = {Branch-and-bound (B\&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B\&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.}, language = {en} } @inproceedings{RehfeldtShinanoKoch2021, author = {Rehfeldt, Daniel and Shinano, Yuji and Koch, Thorsten}, title = {SCIP-Jack: An exact high performance solver for Steiner tree problems in graphs and related problems}, booktitle = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, publisher = {Springer}, doi = {10.1007/978-3-030-55240-4_10}, year = {2021}, abstract = {The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-JACK has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-JACK is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-JACK and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality.}, language = {en} } @article{MunguiaOxberryRajanetal.2019, author = {Munguia, Lluis-Miquel and Oxberry, Geoffrey and Rajan, Deepak and Shinano, Yuji}, title = {Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs}, journal = {Computational Optimization and Applications}, doi = {10.1007/s10589-019-00074-0}, year = {2019}, abstract = {PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch \& Bound (B\&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B\&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B\&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.}, language = {en} }