@misc{GamrathAndersonBestuzhevaetal.2020, author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, year = {2020}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @article{GamrathGleixnerKochetal.2019, author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, volume = {37}, journal = {Journal of Computational Mathematics}, doi = {10.4208/jcm.1905-m2019-0055}, pages = {866 -- 888}, year = {2019}, abstract = {The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.}, language = {en} } @misc{BertholdGamrathSalvagnin2019, author = {Berthold, Timo and Gamrath, Gerald and Salvagnin, Domenico}, title = {Exploiting Dual Degeneracy in Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73028}, year = {2019}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 \% on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 \% on average.}, language = {en} } @misc{GleixnerEiflerGallyetal.2017, author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, year = {2017}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @article{GamrathBertholdHeinzetal.2019, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, volume = {11}, journal = {Mathematical Programming Computation}, number = {4}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {10.1007/s12532-019-00159-1}, pages = {675 -- 702}, year = {2019}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 \% of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @article{GleixnerHendelGamrathetal.2021, author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, year = {2021}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @misc{GamrathKochMartinetal.2013, author = {Gamrath, Gerald and Koch, Thorsten and Martin, Alexander and Miltenberger, Matthias and Weninger, Dieter}, title = {Progress in Presolving for Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/s12532-015-0083-5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42530}, year = {2013}, abstract = {Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.}, language = {en} } @incollection{GamrathBertholdHeinzetal.2015, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-Based Primal Heuristics for Mixed Integer Programming}, volume = {13}, booktitle = {Optimization in the Real World}, publisher = {Springer Japan}, isbn = {978-4-431-55419-6}, doi = {10.1007/978-4-431-55420-2_3}, pages = {37 -- 53}, year = {2015}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @misc{GleixnerBastubbeEifleretal.2018, author = {Gleixner, Ambros and Bastubbe, Michael and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Schubert, Christoph and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Walter, Matthias and Wegscheider, Fabian and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 6.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69361}, year = {2018}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders' decomposition in a generic framework. GCG's detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders' framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @article{GamrathBertholdSalvagnin2020, author = {Gamrath, Gerald and Berthold, Timo and Salvagnin, Domenico}, title = {An exploratory computational analysis of dual degeneracy in mixed-integer programming}, journal = {EURO Journal on Computational Optimization}, number = {8}, doi = {10.1007/s13675-020-00130-z}, pages = {241 -- 246}, year = {2020}, abstract = {Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different solutions being found by primal heuristics. Nevertheless, only a few methods have been published that either avoid or exploit dual degeneracy. The aim of the present paper is to conduct a thorough computational study on the presence of dual degeneracy for the instances of well-known public MIP instance collections. How many instances are affected by dual degeneracy? How degenerate are the affected models? How does branching affect degeneracy: Does it increase or decrease by fixing variables? Can we identify different types of degenerate MIPs? As a tool to answer these questions, we introduce a new measure for dual degeneracy: the variable-constraint ratio of the optimal face. It provides an estimate for the likelihood that a basic variable can be pivoted out of the basis. Furthermore, we study how the so-called cloud intervals—the projections of the optimal face of the LP relaxations onto the individual variables—evolve during tree search and the implications for reducing the set of branching candidates.}, language = {en} }