@inproceedings{EisenblaetterKochMartinetal.2003, author = {Eisenbl{\"a}tter, Andreas and Koch, Thorsten and Martin, Alexander and Achterberg, Tobias and F{\"u}genschuh, Armin and Koster, Arie M.C.A. and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Modelling Feasible Network Configurations for UMTS}, booktitle = {Telecommunications Network Design and Management}, editor = {Anandalingam, G. and Raghavan, S.}, publisher = {Kluver}, year = {2003}, language = {en} } @inproceedings{EisenblaetterFuegenschuhGeerdesetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Optimisation Methods for UMTS Radio Network Planning}, booktitle = {Operation Research Proceedings 2003}, editor = {Ahr, Dino and Fahrion, Roland and Oswald, Marcus and Reinelt, Gerhard}, publisher = {Springer}, doi = {10.1007/978-3-642-17022-5_5}, pages = {31 -- 38}, year = {2003}, language = {en} } @article{DuerFuegenschuhHuhnetal.2006, author = {D{\"u}r, Mirjam and F{\"u}genschuh, Armin and Huhn, Petra and Klamroth, Kathrin and Saliba, Sleman and Tammer, Christiane}, title = {EURO Summer Institute 2006 in Wittenberg}, volume = {28}, journal = {OR News}, pages = {71 -- 72}, year = {2006}, language = {en} } @misc{EisenblaetterFuegenschuhKochetal.2002, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Koch, Thorsten and Koster, Arie M.C.A. and Martin, Alexander and Pfender, Tobias and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Modelling Feasible Network Configurations for UMTS}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6837}, number = {02-16}, year = {2002}, abstract = {A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.}, language = {en} } @misc{EisenblaetterFuegenschuhGeerdesetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Optimization Methods for UMTS Radio Network Planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7637}, number = {03-41}, year = {2003}, abstract = {The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results.}, language = {en} } @misc{FuegenschuhHillerHumpolaetal.2011, author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szab{\´o}, J{\´a}cint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, doi = {10.1109/EEM.2011.5953035}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12348}, number = {11-09}, year = {2011}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @inproceedings{BirkhoferFuegenschuhGuentheretal.2006, author = {Birkhofer, Herbert and F{\"u}genschuh, Armin and G{\"u}nther, Ute and Junglas, Daniel and Martin, Alexander and Sauer, Thorsten and Ulbrich, Stefan and W{\"a}ldele, Martin and Walter, Stephan}, title = {Topology- and shape-optimization of branched sheet metal products}, booktitle = {Operations Research Proceedings}, editor = {Haasis, Hans-Dietrich and Kopfer, Herbert and Sch{\"o}nberger, J{\"o}rn}, pages = {327 -- 336}, year = {2006}, language = {en} } @inproceedings{FuegenschuhHessMartinetal.2007, author = {F{\"u}genschuh, Armin and Hess, Wolfgang and Martin, Alexander and Ulbrich, Stefan}, title = {Diskrete und kontinuierliche Modelle zur Topologie- und Geometrie-Optimierung von Blechprofilen}, booktitle = {Sonderforschungsbereich 666}, editor = {Groche, P.}, pages = {37 -- 47}, year = {2007}, language = {en} } @inproceedings{FuegenschuhGoettlichHerty2007, author = {F{\"u}genschuh, Armin and G{\"o}ttlich, Simone and Herty, Michael}, title = {Water Contamination Detection}, booktitle = {eOrganisation}, editor = {Oberweis, A. and Weinhardt, C. and Gimpel, H. and Koschmider, A. and Pankratius, V. and Schnizler, B.}, pages = {501 -- 518}, year = {2007}, language = {en} } @inproceedings{FuegenschuhHoefler2006, author = {F{\"u}genschuh, Armin and H{\"o}fler, Benjamin}, title = {Parametrized GRASP Heuristics for Three-Index Assignment}, booktitle = {Evolutionary Computation in Combinatorial Optimization}, editor = {Gottlieb, J. and Raidl, G.}, pages = {61 -- 72}, year = {2006}, language = {en} } @inproceedings{Fuegenschuh2007, author = {F{\"u}genschuh, Armin}, title = {Scheduling Buses and School Starting Times}, booktitle = {Operations Research Proceedings}, editor = {Waldmann, Karl-Heinz and Stocker, Ulrike}, pages = {17 -- 22}, year = {2007}, language = {en} } @misc{BorndoerferFuegenschuhKlugetal.2013, author = {Bornd{\"o}rfer, Ralf and F{\"u}genschuh, Armin and Klug, Torsten and Schang, Thilo and Schlechte, Thomas and Sch{\"u}lldorf, Hanno}, title = {The Freight Train Routing Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18991}, year = {2013}, abstract = {We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.}, language = {en} } @incollection{EisenblaetterFuegenschuhKochetal.2002, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Koch, Thorsten and Koster, Arie M.C.A. and Martin, Alexander and Pfender, Tobias and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Mathematical Model of Feasible Network Configurations for UMTS}, booktitle = {Telecommunications network design and management}, editor = {G. Anandalingam, S.}, publisher = {Kluwer}, pages = {1 -- 24}, year = {2002}, language = {en} } @misc{EisenblaetterFuegenschuhGeerdesetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Koch, Thorsten and T{\"u}rke, Ulrich and Meijerink, Ellen}, title = {XML Data Specification and Documentation}, publisher = {IST-2000-28088 MOMENTUM Technical Report}, year = {2003}, language = {en} } @incollection{Fuegenschuh2003, author = {F{\"u}genschuh, Armin}, title = {Von Mikrochips, Proteinen und Schulbussen - Projektproseminare im Mathematikstudium}, booktitle = {Projektveranstaltungen in Mathematik, Informatik und Ingenieurwissenschaften}, editor = {G{\"o}rts, W.}, publisher = {UVW Universit{\"a}tsVerlagWebler, Bielefeld}, pages = {21 -- 43}, year = {2003}, language = {en} } @misc{Fuegenschuh2002, author = {F{\"u}genschuh, Armin}, title = {Einsatzplanung von {\"O}PNV-Bussen}, publisher = {Mathematische Modellierung mit Sch{\"u}lern - Die Modellierungswoche im Kloster H{\"o}chst. M. Kiehl, A. Schich, S. Purpus (Hrsg.). Zentrum f{\"u}r Mathematik, Bensheim}, year = {2002}, language = {en} } @misc{Fuegenschuh2001, author = {F{\"u}genschuh, Armin}, title = {Proteinfaltung}, publisher = {Mathematische Modellierung mit Sch{\"u}lern - Die Modellierungswoche im Kloster H{\"o}chst. M. Kiehl, A. Schich, S. Purpus (Hrsg.). Zentrum f{\"u}r Mathematik, Bensheim}, year = {2001}, language = {en} } @misc{Fuegenschuh2006, author = {F{\"u}genschuh, Armin}, title = {Optimale Schulanfangszeiten}, publisher = {Bild der Wissenschaft 11/2006, Sonderbeilage zum Klaus-Tschira-Preis}, year = {2006}, language = {en} } @inproceedings{FuegenschuhMartinStoeveken2004, author = {F{\"u}genschuh, Armin and Martin, Alexander and St{\"o}veken, Peter}, title = {Integrated Optimization of School Starting Times and Public Bus Services}, booktitle = {Mathematics in the Supply Chain}, editor = {Bixby, Robert E. and Simchi-Levi, D. and Martin, Alexander and Zimmermann, U.}, year = {2004}, language = {en} } @inproceedings{EisenblaetterFuegenschuhGeerdesetal.2004, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Integer Programming Methods for UMTS Radio Network Planning}, booktitle = {Proceedings of the WiOpt'04, Cambridge, UK}, year = {2004}, language = {en} }