@misc{GalliatDeuflhardRoitzschetal., author = {Galliat, Tobias and Deuflhard, Peter and Roitzsch, Rainer and Cordes, Frank}, title = {Automatic Identification of Metastable Conformations via Self-Organized Neural Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6197}, number = {00-51}, abstract = {As has been shown recently, the identification of metastable chemical conformations leads to a Perron cluster eigenvalue problem for a reversible Markov operator. Naive discretization of this operator would suffer from combinatorial explosion. As a first remedy, a pre-identification of essential degrees of freedom out of the set of torsion angles had been applied up to now. The present paper suggests a different approach based on neural networks: its idea is to discretize the Markov operator via self-organizing (box) maps. The thus obtained box discretization then serves as a prerequisite for the subsequent Perron cluster analysis. Moreover, this approach also permits exploitation of additional structure within embedded simulations. As it turns out, the new method is fully automatic and efficient also in the treatment of biomolecules. This is exemplified by numerical results.}, language = {en} } @misc{KoberSaderZeilhoferetal., author = {Kober, Cornelia and Sader, Robert and Zeilhofer, Hans-Florian and Prohaska, Steffen and Zachow, Stefan and Deuflhard, Peter}, title = {Anisotrope Materialmodellierung f{\"u}r den menschlichen Unterkiefer}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6574}, number = {01-31}, abstract = {Im Rahmen der biomechanischen Simulation kn{\"o}cherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungel{\"o}st. Computertomographische Datens{\"a}tze liefern eine r{\"a}umliche Verteilung der (R{\"o}ntgen-)Dichte und erm{\"o}glichen damit eine gute Darstellung der individuellen Geometrie. Weiter k{\"o}nnen die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsab{\"a}ngige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz f{\"u}r eine anisotrope Materialbeschreibung vorgestellt, die es erm{\"o}glicht, den Einfluss der individuellen kn{\"o}chernen Struktur auf das makroskopische Materialverhalten abzusch{\"a}tzen.}, language = {de} } @misc{DeuflhardHegeSeebass, author = {Deuflhard, Peter and Hege, Hans-Christian and Seebass, Martin}, title = {Progress Towards a Combined MRI/Hyperthermia System}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5755}, number = {00-07}, abstract = {Regional hyperthermia, a clinical cancer therapy, is the main topic of the Sonderforschungsbereich Hyperthermia: Scientific Methods and Clinical Applications'' at Berlin. In recent years, technological improvements towards a better concentration of heat to the desired target region have been achieved. These include a rather sophisticated integrated software environment for therapy planning and a new hyperthermia applicator. In a next step, a detailed closed loop monitoring of the actual treatment is to be developed. For this purpose the hyperthermia applicator is combined with an MRI system, which will allow to check the positioning of the patients and to measure individual blood perfusion as well as the 3D temperature distribution. The measurements will then be employed for an on-line control of the whole treatment. In this intended setting, new fast feedback control algorithms will come into play.}, language = {en} } @misc{DeuflhardReich, author = {Deuflhard, Peter and Reich, Sebastian}, title = {2nd International Symposium Algorithms for Macromolecular Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5455}, number = {TR-97-03}, abstract = {The report contains the program and the collected abstracts of the 2nd International Symposium ``Algorithms for Macromolecular Modelling''.}, language = {en} } @misc{DeuflhardLouisSchlegeletal., author = {Deuflhard, Peter and Louis, Alfred and Schlegel, W. and Seebass, Martin}, title = {Workshop "Scientific Computing in der Medizin" SCMED '97}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5474}, number = {TR-97-05}, abstract = {Die Arbeitstagung \glqq Scientific Computing in der Medizin\grqq , kurz SCMED \grq 97, findet vom 22. - 23. September 1997 im neu errichteten Geb{\"a}ude des Konrad-Zuse-Zentrums auf dem Dahlemer naturwissenschaftlichen Campus der Freien Universt{\"a}t Berlin statt.}, language = {en} } @misc{Deuflhard, author = {Deuflhard, Peter}, title = {Adaptive Pseudo-transient Continuation for Nonlinear Steady State Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6814}, number = {02-14}, abstract = {Pseudo--transient continuation methods are quite popular for the numerical solution of steady state problems, typically in PDEs. They are based on an embedding into a time dependent initial value problem. In the presence of dynamical invariants the Jacobian matrix of the nonlinear equation system is bound to be singular. The paper presents a convergence analysis which takes this property into account -- in contrast to known approaches. On the basis of the new analysis adaptive algorithms are suggested in detail. These include a variant with Jacobian approximations as well as inexact pseudo--transient continuation, both of which play an important role in discretized PDEs. Numerical experiments are left to future work.}, language = {en} } @misc{Deuflhard, author = {Deuflhard, Peter}, title = {From Molecular Dynamics to Conformational Dynamics in Drug Design}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6878}, number = {02-20}, abstract = {Computational drug design studies molecular recognition in the {\em virtual lab}. The arising Hamiltonian dynamics is known to be chaotic and ill-conditioned already after picoseconds, whereas times are \$msec\$ up to \$min\$. Classical molecular dynamics with long term trajectory computation gives, at best, information about time and statistical ensemble averages. The present paper surveys a recent new modeling approach called {\em conformational dynamics}, which is due to the author and Ch. Sch{\"u}tte. This approach achieves information about the dy time scales by telescoping a short term deterministic model with a statistical model. Examples of small biomolecules are included.}, language = {en} } @misc{DeuflhardHochmuth, author = {Deuflhard, Peter and Hochmuth, Reinhard}, title = {Multiscale Analysis of Thermoregulation in the Human Microvascular System}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6985}, number = {02-31}, abstract = {The bio-heat transfer equation is a macroscopic model for describing the heat transfer in microvascular tissue. So far the deduction of the Helmholtz term in the bio-heat transfer equation is not co role. In view of a future numerical application of this new mathematical model to treatment planning in hyperthermia we derive asymptotic estimates for first and second order correctors.}, language = {en} } @misc{DeuflhardNowakWeiser, author = {Deuflhard, Peter and Nowak, Ulrich and Weiser, Martin}, title = {Affine Invariant Adaptive Newton Codes for Discretized PDEs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7005}, number = {02-33}, abstract = {The paper deals with three different Newton algorithms that have recently been worked out in the general frame of affine invariance. Of particular interest is their performance in the numerical solution of discretized boundary value problems (BVPs) for nonlinear partial differential equations (PDEs). Exact Newton methods, where the arising linear systems are solved by direct elimination, and inexact Newton methods, where an inner iteration is used instead, are synoptically presented, both in affine invariant convergence theory and in numerical experiments. The three types of algorithms are: (a) affine covariant (formerly just called affine invariant) Newton algorithms, oriented toward the iterative errors, (b) affine contravariant Newton algorithms, based on iterative residual norms, and (c) affine conjugate Newton algorithms for convex optimization problems and discrete nonlinear elliptic PDEs.}, language = {en} } @misc{EhrigOfenlochSchaberetal., author = {Ehrig, Rainald and Ofenloch, Oliver and Schaber, Karlheinz and Deuflhard, Peter}, title = {Modelling and Simulation of Aerosol Formation by Heterogeneous Nucleation in Gas-Liquid Contact Devices}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6416}, number = {01-15}, abstract = {This paper describes a new simulation tool for the prediction of aerosol formation and behavior in gas--liquid contact devices such as absorbers, scrubbers, quench coolers, and condensers as well as multistage gas cleaning processes, respectively. Aerosol formation can impact severely the separation efficiency of gas cleaning processes. Aerosol or fog formation can arise by spontaneous condensation or desublimation in supersaturated gas phases. The rigorous description of the mass and energy transfer between the gas phase, the liquid phase, and the growing aerosol droplets leads to a system of partial differential and algebraic equations. For the solution of these systems we have developed the plant simulation tool AerCoDe. This program bases upon the linearly--implicit Euler discretisation, which in combination with extrapolation permits an adaptive step size and order control. Typical simulation results of a multistage industrial flue gas scrubbing process are presented. It is shown, that experimental data can be confirmed if the number concentration of condensation nuclei as an input parameter is roughly known.}, language = {en} } @misc{WeiserDeuflhard, author = {Weiser, Martin and Deuflhard, Peter}, title = {The Central Path towards the Numerical Solution of Optimal Control Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6380}, number = {01-12}, abstract = {A new approach to the numerical solution of optimal control problems including control and state constraints is presented. Like hybrid methods, the approach aims at combining the advantages of direct and indirect methods. Unlike hybrid methods, however, our method is directly based on interior-point concepts in function space --- realized via an adaptive multilevel scheme applied to the complementarity formulation and numerical continuation along the central path. Existence of the central path and its continuation towards the solution point is analyzed in some theoretical detail. An adaptive stepsize control with respect to the duality gap parameter is worked out in the framework of affine invariant inexact Newton methods. Finally, the performance of a first version of our new type of algorithm is documented by the successful treatment of the well-known intricate windshear problem.}, language = {en} } @misc{ErdmannKoberLangetal., author = {Erdmann, Bodo and Kober, Cornelia and Lang, Jens and Sader, Robert and Zeilhofer, Hans-Florian and Deuflhard, Peter}, title = {Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6403}, number = {01-14}, abstract = {By computed tomography data (CT), the individual geometry of the mandible is quite well reproduced, also the separation between cortical and trabecular bone. Using anatomical knowledge about the architecture and the functional potential of the masticatory muscles, realistic situations were approximated. The solution of the underlying partial differential equations describing linear elastic material behaviour is provided by an adaptive finite element method. Estimations of the discretization error, local grid refinement, and multilevel techniques guarantee the reliability and efficiency of the method.}, language = {en} } @misc{Deuflhard, author = {Deuflhard, Peter}, title = {A Comparison of Related Concepts in Computational Chemistry and Mathematics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7138}, number = {02-46}, abstract = {This article studies the relation of the two scientific languages Chemistry and Mathematics via three selected comparisons: (a) QSSA versus dynamic ILDM in reaction kinetics, (b) lumping versus discrete Galerkin methods in polymer chemistry, and (c) geometrical conformations versus metastable conformations in drug design. The common clear message from these comparisons is that chemical intuition may pave the way for mathematical concepts just as chemical concepts may gain from mathematical precisioning. Along this line, significant improvements in chemical research and engineering have already been possible -- and can be further expected in the future from the dialogue between the two scientific languages.}, language = {en} } @misc{WeiserSchielaDeuflhard, author = {Weiser, Martin and Schiela, Anton and Deuflhard, Peter}, title = {Asymptotic Mesh Independence of Newton's Method Revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7352}, number = {03-13}, abstract = {The paper presents a new affine invariant theory on asymptotic mesh independence of Newton's method in nonlinear PDEs. Compared to earlier attempts, the new approach is both much simpler and more natural from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE problems.}, language = {en} } @misc{HochmuthDeuflhard, author = {Hochmuth, Reinhard and Deuflhard, Peter}, title = {Multiscale Analysis for the Bio-Heat Transfer Equation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7302}, number = {03-08}, abstract = {The bio-heat transfer equation is a macroscopic model for describing the heat transfer in microvascular tissue. In [{\sl Deuflhard, Hochmuth 2002}] the authors applied homogenization techniques to derive the bio-heat transfer equation as asymptotic result of boundary value problems which provide a microscopic description for microvascular tissue. Here those results are generalized to a geometrical setting where the regions of blood are allowed to be connected. Moreover, asymptotic corrector results are derived.}, language = {en} } @misc{DeuflhardWeber, author = {Deuflhard, Peter and Weber, Marcus}, title = {Robust Perron Cluster Analysis in Conformation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7415}, number = {03-19}, abstract = {The key to molecular conformation dynamics is the direct identification of metastable conformations, which are almost invariant sets of molecular dynamical systems. Once some reversible Markov operator has been discretized, a generalized symmetric stochastic matrix arises. This matrix can be treated by Perron cluster analysis, a rather recent method involving a Perron cluster eigenproblem. The paper presents an improved Perron cluster analysis algorithm, which is more robust than earlier suggestions. Numerical examples are included.}, language = {en} } @misc{DeuflhardSchuette, author = {Deuflhard, Peter and Sch{\"u}tte, Christof}, title = {Molecular Conformation Dynamics and Computational Drug Design}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7427}, number = {03-20}, abstract = {The paper surveys recent progress in the mathematical modelling and simulation of essential molecular dynamics. Particular emphasis is put on computational drug design wherein time scales of \$msec\$ up to \$min\$ play the dominant role. Classical long-term molecular dynamics computations, however, would run into ill-conditioned initial value problems already after time spans of only \$psec=10^{-12} sec\$. Therefore, in order to obtain results for times of pharmaceutical interest, a combined deterministic-stochastic model is needed. The concept advocated in this paper is the direct identification of metastable conformations together with their life times and their transition patterns. It can be interpreted as a {\em transfer operator} approach corresponding to some underlying hybrid Monte Carlo process, wherein short-term trajectories enter. Once this operator has been discretized, which is a hard problem of its own, a stochastic matrix arises. This matrix is then treated by {\em Perron cluster analysis}, a recently developed cluster analysis method involving the numerical solution of an eigenproblem for a Perron cluster of eigenvalues. In order to avoid the 'curse of dimension', the construction of appropriate boxes for the spatial discretization of the Markov operator requires careful consideration. As a biomolecular example we present a rather recent SARS protease inhibitor.}, language = {en} } @misc{WeiserDeuflhardErdmann, author = {Weiser, Martin and Deuflhard, Peter and Erdmann, Bodo}, title = {Affine conjugate adaptive Newton methods for nonlinear elastomechanics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7768}, number = {04-01}, abstract = {The paper extends affine conjugate Newton methods from convex to nonconvex minimization, with particular emphasis on PDE problems originating from compressible hyperelasticity. Based on well-known schemes from finite dimensional nonlinear optimization, three different algorithmic variants are worked out in a function space setting, which permits an adaptive multilevel finite element implementation. These algorithms are tested on two well-known 3D test problems and a real-life example from surgical operation planning.}, language = {en} } @misc{DeuflhardChairs, author = {Deuflhard, Peter and (Chairs), Hyung Yong Ra}, title = {Korean-German Bilateral Symposium on Scientific Computing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7778}, number = {04-02}, abstract = {Collection of abstracts of the Korean-German Bilateral Symposium on Scientific Computing, Berlin January 15/16, 2004}, language = {en} } @misc{KlapprothSchielaDeuflhard, author = {Klapproth, Corinna and Schiela, Anton and Deuflhard, Peter}, title = {Consistency Results for the Contact-Stabilized Newmark Method}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11164}, number = {09-06}, abstract = {The paper considers the time integration of frictionless dynamical contact problems between viscoelastic bodies in the frame of the Signorini condition. Among the numerical integrators, interest focuses on the contact-stabilized Newmark method recently suggested by Deuflhard et al., which is compared to the classical Newmark method and an improved energy dissipative version due to Kane et al. In the absence of contact, any such variant is equivalent to the St{\"o}rmer-Verlet scheme, which is well-known to have consistency order 2. In the presence of contact, however, the classical approach to discretization errors would not show consistency at all because of the discontinuity at the contact. Surprisingly, the question of consistency in the constrained situation has not been solved yet. The present paper fills this gap by means of a novel proof technique using specific norms based on earlier perturbation results due to the authors. The corresponding estimation of the local discretization error requires the bounded total variation of the solution. The results have consequences for the construction of an adaptive timestep control, which will be worked out subsequently in a forthcoming paper.}, language = {en} }