@article{AchterbergBerthold2007, author = {Achterberg, Tobias and Berthold, Timo}, title = {Improving the Feasibility Pump}, series = {Discrete Optimization}, volume = {Special Issue 4}, journal = {Discrete Optimization}, number = {1}, pages = {77 -- 86}, year = {2007}, language = {en} } @inproceedings{AchterbergBerthold2009, author = {Achterberg, Tobias and Berthold, Timo}, title = {Hybrid Branching}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, volume = {5547}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, editor = {van Hoeve, Willem and Hooker, John}, publisher = {Springer}, pages = {309 -- 311}, year = {2009}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, series = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, booktitle = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, doi = {10.1109/IPDPS.2016.56}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update}, series = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, booktitle = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, editor = {IEEE,}, publisher = {IEEE Computer Society}, address = {Washington, DC, USA}, isbn = {978-1-4799-4117-9}, doi = {10.1109/IPDPSW.2014.174}, pages = {1552 -- 1561}, language = {en} } @article{GleixnerHendelGamrathetal., author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, series = {Mathematical Programming Computation}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @article{AchterbergBixbyGuetal., author = {Achterberg, Tobias and Bixby, Robert E. and Gu, Zonghao and Rothberg, Edward and Weninger, Dieter}, title = {Presolve Reductions in Mixed Integer Programming}, series = {INFORMS Journal on Computing}, journal = {INFORMS Journal on Computing}, abstract = {Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature.}, language = {en} } @misc{AchterbergBixbyGuetal., author = {Achterberg, Tobias and Bixby, Robert E. and Gu, Zonghao and Rothberg, Edward and Weninger, Dieter}, title = {Presolve Reductions in Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60370}, abstract = {Mixed integer programming has become a very powerful tool for modeling and solving real-world planning and scheduling problems, with the breadth of applications appearing to be almost unlimited. A critical component in the solution of these mixed-integer programs is a set of routines commonly referred to as presolve. Presolve can be viewed as a collection of preprocessing techniques that reduce the size of and, more importantly, improve the ``strength'' of the given model formulation, that is, the degree to which the constraints of the formulation accurately describe the underlying polyhedron of integer-feasible solutions. As our computational results will show, presolve is a key factor in the speed with which we can solve mixed-integer programs, and is often the difference between a model being intractable and solvable, in some cases easily solvable. In this paper we describe the presolve functionality in the Gurobi commercial mixed-integer programming code. This includes an overview, or taxonomy of the different methods that are employed, as well as more-detailed descriptions of several of the techniques, with some of them appearing, to our knowledge, for the first time in the literature.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving hard MIPLIB2003 problems with ParaSCIP on Supercomputers: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42888}, abstract = {Contemporary supercomputers can easily provide years of CPU time per wall-clock hour. One challenge of today's software development is how to harness this wast computing power in order to solve really hard mixed integer programming instances. In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in more than ten consecutive runs, restarting from checkpointing files. The contribution of this paper is threefold: For the first time, we present computational results of single runs for those two instances. Secondly, we provide new improved upper and lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we explain which new developments led to these results and discuss the current progress of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the Titan supercomputer, using up to 35,200 cores.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78393}, abstract = {Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} }