@misc{RosanwoPetzProhaskaetal.2008, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding - Method and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11032}, number = {08-49}, year = {2008}, abstract = {This work introduces a novel streamline seeding technique based on dual streamlines that are orthogonal to the vector field, instead of tangential. The greedy algorithm presented here produces a net of orthogonal streamlines that is iteratively refined resulting in good domain coverage and a high degree of continuity and uniformity. The algorithm is easy to implement and efficient, and it naturally extends to curved surfaces.}, language = {en} } @misc{KlindtBaumProhaskaetal.2013, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17731}, year = {2013}, abstract = {We present iCon.text, a kiosk platform for the iPad centered around artefacts, whose content and layout can be tailored without programming skills for specific museum exhibitions. The central metaphor to access information is a virtual postcard with one front and a customizable number of back sides that provide details about exhibits to museum visitors in textual and image form. Back sides can link to others cards. Access to these postcards is possible through one or more navigation views that can be navigated to from a navigation bar. The entry point to the application is designed as a multitouch interactive pile of cards in a playful manner that allows visitors of any age an easy approach to the presentation and interaction metaphor. To directly access a certain postcard, a mosaic view can be uitilized to provide an overview about all available exhibits. A category view groups postcards into themes. Locating artefacts on a zoomable map or exhibition floor plan allows for conveying information about spatial contexts between different objects and their location. Furthermore, contexts can be illustrated with a two stage view comprising an overview and corresponding detail views to provide further insights into the spatial, temporal, and thematic contexts of artefacts. The application scaffolding allows the design of bilingual presentations to support exhibitions with an international audience. The logo of the presenting institution or exhibition can be incorporated to display the the kiosk's corporate design branding and to access an imprint or further informations. Usage is logged into files to provide a basis for extracting statistical information about the usage. The details about the exhibits are presented as images and as such impose no limit to the design choices made by the content provider or exhibition designer. The application (enhanced with a panoramic view) has been integrated successfully into a large special exhibition about the ancient city of Pergamon 2011/2012 at the Pergamon Museum Berlin within the interdisciplinary project "Berlin Sculpture Network".}, language = {en} } @inproceedings{HegeSchirmacherWesterhoffetal.2002, author = {Hege, Hans-Christian and Schirmacher, Hartmut and Westerhoff, Malte and Lamecker, Hans and Prohaska, Steffen and Zachow, Stefan}, title = {From Image Data to Three-Dimensional Models - Case Studies on the Impact of 3D Patient Models}, booktitle = {Proceedings of the Japan Korea Computer Graphics Conference 2002}, publisher = {Kanazawa University}, address = {Kanazawa City, Ishikawa, Japan}, year = {2002}, language = {en} } @misc{HombergBaumWiebeletal.2013, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42510}, year = {2013}, abstract = {An intuitive and sparse representation of the void space of porous materials supports the efficient analysis and visualization of interesting qualitative and quantitative parameters of such materials. We introduce definitions of the elements of this void space, here called pore space, based on its distance function, and present methods to extract these elements using the extremal structures of the distance function. The presented methods are implemented by an image processing pipeline that determines pore centers, pore paths and pore constrictions. These pore space elements build a graph that represents the topology of the pore space in a compact way. The representations we derive from μCT image data of realistic soil specimens enable the computation of many statistical parameters and, thus, provide a basis for further visual analysis and application-specific developments. We introduced parts of our pipeline in previous work. In this chapter, we present additional details and compare our results with the analytic computation of the pore space elements for a sphere packing in order to show the correctness of our graph computation.}, language = {en} } @inproceedings{RitterProhaskaBrandetal.2011, author = {Ritter, Zully and Prohaska, Steffen and Brand, R. and Friedmann, A. and Hege, Hans-Christian and Goebbels, J{\"u}rgen and Felsenberg, Dieter}, title = {Osteocytes number and volume in osteoporotic and in healthy bone biopsies analysed using Synchrotron CT: a pilot study}, booktitle = {Proc. ISB 2011}, year = {2011}, language = {en} } @misc{HombergBaumWiebeletal.2014, author = {Homberg, Ulrike and Baum, Daniel and Wiebel, Alexander and Prohaska, Steffen and Hege, Hans-Christian}, title = {Definition, Extraction, and Validation of Pore Structures in Porous Materials}, journal = {Topological Methods in Data Analysis and Visualization III}, editor = {Bremer, Peer-Timo and Hotz, Ingrid and Pascucci, Valerio and Peikert, Ronald}, publisher = {Springer}, doi = {10.1007/978-3-319-04099-8_15}, pages = {235 -- 248}, year = {2014}, language = {en} } @inproceedings{KlindtProhaskaBaumetal.2012, author = {Klindt, Marco and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian}, title = {Conveying Archaeological Contexts to Museum Visitors: Case Study Pergamon Exhibition}, booktitle = {VAST12: The 13th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage - Short Papers}, editor = {Arnold, David and Kaminski, Jaime and Niccolucci, Franco and Stork, Andre}, publisher = {Eurographics Association}, address = {Brighton, UK}, doi = {10.2312/PE/VAST/VAST12S/025-028}, pages = {25 -- 28}, year = {2012}, language = {en} } @inproceedings{KlindtBaumProhaskaetal.2012, author = {Klindt, Marco and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {iCon.text - a customizable iPad app for kiosk applications in museum exhibitions}, booktitle = {EVA 2012 Berlin}, publisher = {Gesellschaft zur F{\"o}rderung angewandter Informatik e.V.}, address = {Volmerstraße 3, 12489 Berlin}, pages = {150 -- 155}, year = {2012}, language = {en} } @article{RigortGuentherHegerletal.2012, author = {Rigort, Alexander and G{\"u}nther, David and Hegerl, Reiner and Baum, Daniel and Weber, Britta and Prohaska, Steffen and Medalia, Ohad and Baumeister, Wolfgang and Hege, Hans-Christian}, title = {Automated segmentation of electron tomograms for a quantitative description of actin filament networks}, volume = {177}, journal = {Journal of Structural Biology}, doi = {10.1016/j.jsb.2011.08.012}, pages = {135 -- 144}, year = {2012}, language = {en} } @article{WeberGreenanProhaskaetal.2012, author = {Weber, Britta and Greenan, Garrett and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian and M{\"u}ller-Reichert, Thomas and Hyman, Anthony and Verbavatz, Jean-Marc}, title = {Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos}, volume = {178}, journal = {Journal of Structural Biology}, number = {2}, doi = {10.1016/j.jsb.2011.12.004}, pages = {129 -- 138}, year = {2012}, language = {en} } @inproceedings{EhrigGoebbelsMeineletal.2011, author = {Ehrig, Karsten and Goebbels, J{\"u}rgen and Meinel, Dietmar and Paetsch, Olaf and Prohaska, Steffen and Zobel, Valentin}, title = {Comparison of Crack Detection Methods for Analyzing Damage Processes in Concrete with Computed Tomography}, booktitle = {International Symposium on Digital Industrial Radiology and Computed Tomography}, year = {2011}, language = {en} } @article{LindowBaumProhaskaetal.2010, author = {Lindow, Norbert and Baum, Daniel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Accelerated Visualization of Dynamic Molecular Surfaces}, volume = {29}, journal = {Comput. Graph. Forum}, doi = {10.1111/j.1467-8659.2009.01693.x}, pages = {943 -- 952}, year = {2010}, language = {en} } @inproceedings{ReininghausGuentherHotzetal.2010, author = {Reininghaus, Jan and G{\"u}nther, David and Hotz, Ingrid and Prohaska, Steffen and Hege, Hans-Christian}, title = {TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory}, volume = {6327}, booktitle = {Mathematical Software - ICMS 2010}, publisher = {Springer}, doi = {10.1007/978-3-642-15582-6_35}, pages = {198 -- 208}, year = {2010}, language = {en} } @article{KussGenselMeyeretal.2010, author = {Kuß, Anja and Gensel, Maria and Meyer, Bj{\"o}rn and Dercksen, Vincent J. and Prohaska, Steffen}, title = {Effective Techniques to Visualize Filament-Surface Relationships}, volume = {29}, journal = {Comput. Graph. Forum}, pages = {1003 -- 1012}, year = {2010}, language = {en} } @misc{GuentherReininghausProhaskaetal.2012, author = {G{\"u}nther, David and Reininghaus, Jan and Prohaska, Steffen and Weinkauf, Tino and Hege, Hans-Christian}, title = {Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields}, journal = {Topological Methods in Data Analysis and Visualization II}, editor = {Peikert, Ronny and Hauser, Helwig and Carr, Hamish}, publisher = {Springer}, doi = {10.1007/978-3-642-23175-9_2}, pages = {15 -- 29}, year = {2012}, language = {en} } @inproceedings{WeberMoellerVerbavatzetal.2011, author = {Weber, Britta and M{\"o}ller, Marit and Verbavatz, Jean-Marc and Baum, Daniel and Hege, Hans-Christian and Prohaska, Steffen}, title = {Fast Tracing of Microtubule Centerlines in Electron Tomograms}, booktitle = {BioVis 2011 Abstracts, 1st IEEE Symposium on Biological Data Visualization}, year = {2011}, language = {en} } @inproceedings{HombergBinnerProhaskaetal.2009, author = {Homberg, Ulrike and Binner, Richard and Prohaska, Steffen and Dercksen, Vincent J. and Kuß, Anja and Kalbe, Ute}, title = {Determining Geometric Grain Structure from X-Ray Micro-Tomograms of Gradated Soil}, volume = {21}, booktitle = {Workshop Internal Erosion}, pages = {37 -- 52}, year = {2009}, language = {en} } @article{PetzKastenProhaskaetal.2009, author = {Petz, Christoph and Kasten, Jens and Prohaska, Steffen and Hege, Hans-Christian}, title = {Hierarchical Vortex Regions in Swirling Flow}, volume = {28}, journal = {Computer Graphics Forum}, number = {3}, pages = {863 -- 870}, year = {2009}, language = {en} } @inproceedings{DercksenWeberGuentheretal.2009, author = {Dercksen, Vincent J. and Weber, Britta and G{\"u}nther, David and Oberlaender, Marcel and Prohaska, Steffen and Hege, Hans-Christian}, title = {Automatic alignment of stacks of filament data}, booktitle = {Proc. IEEE International Symposium on Biomedical Imaging}, publisher = {IEEE press}, address = {Boston, USA}, pages = {971 -- 974}, year = {2009}, language = {en} } @inproceedings{RosanwoPetzProhaskaetal.2009, author = {Rosanwo, Olufemi and Petz, Christoph and Prohaska, Steffen and Hotz, Ingrid and Hege, Hans-Christian}, title = {Dual Streamline Seeding}, booktitle = {Proceedings of the IEEE Pacific Visualization Symposium}, editor = {Eades, Peter and Ertl, Thomas and Shen, Han-Wei}, address = {Beijing, China}, pages = {9 -- 16}, year = {2009}, language = {en} } @inproceedings{KussProhaskaMeyeretal.2008, author = {Kuß, Anja and Prohaska, Steffen and Meyer, Bj{\"o}rn and Rybak, J{\"u}rgen and Hege, Hans-Christian}, title = {Ontology-Based Visualization of Hierarchical Neuroanatomical Structures}, booktitle = {Proceedings of the Eurographics Workshop on Visual Computing for Biomedicine VCBM 2008}, pages = {177 -- 184}, year = {2008}, language = {en} } @inproceedings{PetzProhaskaGoubergritsetal.2008, author = {Petz, Christoph and Prohaska, Steffen and Goubergrits, Leonid and Kertzscher, Ulrich and Hege, Hans-Christian}, title = {Near-Wall Flow Visualization in Flattened Surface Neighborhoods}, booktitle = {Proc. Simulation and Visualization 2008}, address = {Magdeburg, Germany}, pages = {93 -- 105}, year = {2008}, language = {en} } @article{SahnerWeberLameckeretal.2008, author = {Sahner, Jan and Weber, Britta and Lamecker, Hans and Prohaska, Steffen}, title = {Extraction of feature Lines on surface meshes based on discrete Morse theory}, volume = {27}, journal = {Computer Graphics Forum}, number = {3}, address = {Eindhoven, Netherlands}, doi = {10.1111/j.1467-8659.2008.01202.x}, pages = {735 -- 742}, year = {2008}, language = {en} } @inproceedings{KussProhaskaRybak2009, author = {Kuß, Anja and Prohaska, Steffen and Rybak, J{\"u}rgen}, title = {Using Ontologies for the Visualization of Hierarchical Neuroanatomical Structures}, booktitle = {Frontiers in Neuroinformatics. Conference Abstract: 2nd INCF Congress of Neuroinformatics}, doi = {10.3389/conf.neuro.11.2009.08.017}, year = {2009}, language = {en} } @inproceedings{KaehlerProhaskaHutanuetal.2005, author = {K{\"a}hler, Ralf and Prohaska, Steffen and Hutanu, Andrei and Hege, Hans-Christian}, title = {Visualization of time-dependent remote adaptive mesh refinement data}, booktitle = {Proc. IEEE Visualization 2005}, address = {Minneapolis, USA}, doi = {10.1109/VISUAL.2005.1532793}, pages = {175 -- 182}, year = {2005}, language = {en} } @misc{HoerthBaumKnoeteletal.2015, author = {Hoerth, Rebecca M. and Baum, Daniel and Kn{\"o}tel, David and Prohaska, Steffen and Willie, Bettina M. and Duda, Georg and Hege, Hans-Christian and Fratzl, Peter and Wagermaier, Wolfgang}, title = {Registering 2D and 3D Imaging Data of Bone during Healing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53426}, year = {2015}, abstract = {Purpose/Aims of the Study: Bone's hierarchical structure can be visualized using a variety of methods. Many techniques, such as light and electron microscopy generate two-dimensional (2D) images, while micro computed tomography (μCT) allows a direct representation of the three-dimensional (3D) structure. In addition, different methods provide complementary structural information, such as the arrangement of organic or inorganic compounds. The overall aim of the present study is to answer bone research questions by linking information of different 2D and 3D imaging techniques. A great challenge in combining different methods arises from the fact that they usually reflect different characteristics of the real structure. Materials and Methods: We investigated bone during healing by means of μCT and a couple of 2D methods. Backscattered electron images were used to qualitatively evaluate the tissue's calcium content and served as a position map for other experimental data. Nanoindentation and X-ray scattering experiments were performed to visualize mechanical and structural properties. Results: We present an approach for the registration of 2D data in a 3D μCT reference frame, where scanning electron microscopies serve as a methodic link. Backscattered electron images are perfectly suited for registration into μCT reference frames, since both show structures based on the same physical principles. We introduce specific registration tools that have been developed to perform the registration process in a semi-automatic way. Conclusions: By applying this routine, we were able to exactly locate structural information (e.g. mineral particle properties) in the 3D bone volume. In bone healing studies this will help to better understand basic formation, remodeling and mineralization processes.}, language = {en} }