@phdthesis{Achterberg2009, author = {Achterberg, Tobias}, title = {Constraint Integer Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11129}, year = {2009}, abstract = {This thesis introduces the novel paradigm of "constraint integer programming" (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method.}, language = {en} } @misc{BertholdPfetsch2008, author = {Berthold, Timo and Pfetsch, Marc}, title = {Detecting Orbitopal Symmetries}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10842}, number = {08-33}, year = {2008}, abstract = {Orbitopes can be used to handle symmetries which arise in integer programming formulations with an inherent assignment structure. We investigate the detection of symmetries appearing in this approach. We show that detecting so-called orbitopal symmetries is graph-isomorphism hard in general, but can be performed in linear time if the assignment structure is known.}, language = {en} } @misc{BertholdHeinzPfetsch2008, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc}, title = {Solving Pseudo-Boolean Problems with SCIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10671}, number = {08-12}, year = {2008}, abstract = {Pseudo-Boolean problems generalize SAT problems by allowing linear constraints and a linear objective function. Different solvers, mainly having their roots in the SAT domain, have been proposed and compared,for instance, in Pseudo-Boolean evaluations. One can also formulate Pseudo-Boolean models as integer programming models. That is,Pseudo-Boolean problems lie on the border between the SAT domain and the integer programming field. In this paper, we approach Pseudo-Boolean problems from the integer programming side. We introduce the framework SCIP that implements constraint integer programming techniques. It integrates methods from constraint programming, integer programming, and SAT-solving: the solution of linear programming relaxations, propagation of linear as well as nonlinear constraints, and conflict analysis. We argue that this approach is suitable for Pseudo-Boolean instances containing general linear constraints, while it is less efficient for pure SAT problems. We present extensive computational experiments on the test set used for the Pseudo-Boolean evaluation 2007. We show that our approach is very efficient for optimization instances and competitive for feasibility problems. For the nonlinear parts, we also investigate the influence of linear programming relaxations and propagation methods on the performance. It turns out that both techniques are helpful for obtaining an efficient solution method.}, language = {en} } @misc{BorndoerferSchlechteWeider2010, author = {Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Weider, Steffen}, title = {Railway Track Allocation by Rapid Branching}, organization = {Zuse Institut Berlin}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11864}, number = {10-22}, year = {2010}, abstract = {The track allocation problem, also known as train routing problem or train timetabling problem, is to find a conflict-free set of train routes of maximum value in a railway network. Although it can be modeled as a standard path packing problem, instances of sizes relevant for real-world railway applications could not be solved up to now. We propose a rapid branching column generation approach that integrates the solution of the LP relaxation of a path coupling formulation of the problem with a special rounding heuristic. The approach is based on and exploits special properties of the bundle method for the approximate solution of convex piecewise linear functions. Computational results for difficult instances of the benchmark library TTPLIB are reported.}, language = {en} } @misc{BertholdFeydyStuckey2010, author = {Berthold, Timo and Feydy, Thibaut and Stuckey, Peter}, title = {Rapid Learning for Binary Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11663}, number = {10-04}, year = {2010}, abstract = {Learning during search allows solvers for discrete optimization problems to remember parts of the search that they have already performed and avoid revisiting redundant parts. Learning approaches pioneered by the SAT and CP communities have been successfully incorporated into the SCIP constraint integer programming platform. In this paper we show that performing a heuristic constraint programming search during root node processing of a binary program can rapidly learn useful nogoods, bound changes, primal solutions, and branching statistics that improve the remaining IP search.}, language = {en} } @misc{BorndoerferNeumann2010, author = {Bornd{\"o}rfer, Ralf and Neumann, Marika}, title = {Models for Line Planning with Transfers}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11742}, number = {10-11}, year = {2010}, abstract = {We propose a novel integer programming approach to transfer minimization for line planning problems in public transit. The idea is to incorporate penalties for transfers that are induced by "connection capacities" into the construction of the passenger paths. We show that such penalties can be dealt with by a combination of shortest and constrained shortest path algorithms such that the pricing problem for passenger paths can be solved efficiently. Connection capacity penalties (under)estimate the true transfer times. This error is, however, not a problem in practice. We show in a computational comparison with two standard models on a real-world scenario that our approach can be used to minimize passenger travel and transfer times for large-scale line planning problems with accurate results.}, language = {en} } @phdthesis{Achterberg2007, author = {Achterberg, Tobias}, title = {Constraint Integer Programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-16117}, year = {2007}, abstract = {This thesis introduces the novel paradigm of constraint integer programming (CIP), which integrates constraint programming (CP) and mixed integer programming (MIP) modeling and solving techniques. It is supplemented by the software SCIP, which is a solver and framework for constraint integer programming that also features SAT solving techniques. SCIP is freely available in source code for academic and non-commercial purposes. Our constraint integer programming approach is a generalization of MIP that allows for the inclusion of arbitrary constraints, as long as they turn into linear constraints on the continuous variables after all integer variables have been fixed. The constraints, may they be linear or more complex, are treated by any combination of CP and MIP techniques: the propagation of the domains by constraint specific algorithms, the generation of a linear relaxation and its solving by LP methods, and the strengthening of the LP by cutting plane separation. The current version of SCIP comes with all of the necessary components to solve mixed integer programs. In the thesis, we cover most of these ingredients and present extensive computational results to compare different variants for the individual building blocks of a MIP solver. We focus on the algorithms and their impact on the overall performance of the solver. In addition to mixed integer programming, the thesis deals with chip design verification, which is an important topic of electronic design automation. Chip manufacturers have to make sure that the logic design of a circuit conforms to the specification of the chip. Otherwise, the chip would show an erroneous behavior that may cause failures in the device where it is employed. An important subproblem of chip design verification is the property checking problem, which is to verify whether a circuit satisfies a specified property. We show how this problem can be modeled as constraint integer program and provide a number of problem-specific algorithms that exploit the structure of the individual constraints and the circuit as a whole. Another set of extensive computational benchmarks compares our CIP approach to the current state-of-the-art SAT methodology and documents the success of our method.}, language = {en} } @misc{AchterbergBertholdKochetal.2008, author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: a New Approach to Integrate CP and MIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10520}, number = {08-01}, year = {2008}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques.}, language = {en} }