@article{GuptaGramatkeEinspanieretal.2017, author = {Gupta, Pooja and Gramatke, Annika and Einspanier, Ralf and Sch{\"u}tte, Christof and von Kleist, Max and Sharbati, Jutta}, title = {In silico cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements}, series = {Toxicology in Vitro}, volume = {41}, journal = {Toxicology in Vitro}, issn = {1438-0064}, pages = {179 -- 188}, year = {2017}, abstract = {Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are essential. xCELLigence's real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50\% inhibitory concentration IC50 on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10 chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 μM for the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the tested cell line, in agreement with literature knowledge. IC50 values of all apparent in vivo non-toxic compounds were estimated to be non-toxic by our method. Corresponding estimates from RTCA's in-built model gave false positive (toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master.}, language = {en} } @misc{GuptaGramatkeEinspanieretal., author = {Gupta, Pooja and Gramatke, Annika and Einspanier, Ralf and Sch{\"u}tte, Christof and von Kleist, Max and Sharbati, Jutta}, title = {In silicio cytotoxicity assessment on cultured rat intestinal cells deduced from cellular impedance measurements}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62666}, abstract = {Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are essential. xCELLigence's real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50\% inhibitory concentration IC_{50} on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10 chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 μM for the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the tested cell line, in agreement with literature knowledge. IC_{50} values of all apparent in vivo non-toxic compounds were estimated to be non-toxic by our method. Corresponding estimates from RTCA's in-built model gave false positive (toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master.}, language = {en} } @misc{DierkesWadeNowaketal.2011, author = {Dierkes, Thomas and Wade, Moritz and Nowak, Ulrich and R{\"o}blitz, Susanna}, title = {BioPARKIN - Biology-related Parameter Identification in Large Kinetic Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12706}, number = {11-15}, year = {2011}, abstract = {Modelling, parameter identification, and simulation play an important r{\^o}le in Systems Biology. In recent years, various software packages have been established for scientific use in both licencing types, open source as well as commercial. Many of these codes are based on inefficient and mathematically outdated algorithms. By introducing the package BioPARKIN recently developed at ZIB, we want to improve this situation significantly. The development of the software BioPARKIN involves long standing mathematical ideas that, however, have not yet entered the field of Systems Biology, as well as new ideas and tools that are particularly important for the analysis of the dynamics of biological networks. BioPARKIN originates from the package PARKIN, written by P.Deuflhard and U.Nowak, that has been applied successfully for parameter identification in physical chemistry for many years.}, language = {en} }