@misc{Kinder, type = {Master Thesis}, author = {Kinder, Mathias}, title = {Models for Periodic Timetabling}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10887}, school = {Zuse Institute Berlin (ZIB)}, abstract = {We investigate the computation of periodic timetables for public transport by mixed integer programming. After introducing the problem, we describe two mathematical models for periodic timetabling, the PERIODIC EVENT SCHEDULING PROBLEM (PESP) and the QUADRATIC SEMI-ASSIGNMENT PROBLEM. Specifically, we give an overview of existing integer programming (IP) formulations for both models. An important contribution of our work are new IP formulations for the PESP based on time discretization. We provide an analytical comparison of these formulations and describe different techniques that allow a more efficient solution by mixed integer programming. In a preliminary computational study, on the basis of standard IP solvers, we compare different formulations for computing periodic timetables. Our results justify a further investigation of the time discretization approach. Typically the timetable is optimized for the current traffic situation. The main difficulty with this approach is that after introducing the new timetable the passengers' travel behavior may differ from that assumed for the computation. Motivated by this problem, we examine an iterative timetabling procedure that is a combination of timetable computation and passenger routing. We discuss the algorithmic issues of the passenger routing and study properties of the computed timetables. Finally, we confirm our theoretical results on the basis of an own implementation.}, language = {en} }