@misc{BorndoerferNeumannPfetsch, author = {Bornd{\"o}rfer, Ralf and Neumann, Marika and Pfetsch, Marc}, title = {The Steiner Connectivity Problem}, issn = {1438-0064}, doi = {10.1007/s10107-012-0564-5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11171}, number = {09-07}, abstract = {The Steiner connectivity problem is a generalization of the Steiner tree problem. It consists in finding a minimum cost set of simple paths to connect a subset of nodes in an undirected graph. We show that polyhedral and algorithmic results on the Steiner tree problem carry over to the Steiner connectivity problem, namely, the Steiner cut and the Steiner partition inequalities, as well as the associated polynomial time separation algorithms, can be generalized. Similar to the Steiner tree case, a directed formulation, which is stronger than the natural undirected one, plays a central role.}, language = {en} } @misc{BorndoerferCardonha, author = {Bornd{\"o}rfer, Ralf and Cardonha, Carlos}, title = {A Set Partitioning Approach to Shunting}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11326}, number = {09-18}, abstract = {The Vehicle Positioning Problem (VPP) is a classical combinatorial optimization problem in public transport planning. A number of models and approaches have been suggested in the literature, which work for small problems, but not for large ones. We propose in this article a novel set partitioning model and an associated column generation solution approach for the VPP. The model provides a tight linear description of the problem. The pricing problem, and hence the LP relaxation itself, can be solved in polynomial resp. pseudo-polynomial time for some versions of the problems.}, language = {en} } @misc{BertholdHeinzVigerske, author = {Berthold, Timo and Heinz, Stefan and Vigerske, Stefan}, title = {Extending a CIP framework to solve MIQCPs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11371}, number = {09-23}, abstract = {This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach.}, language = {en} } @misc{Bley, author = {Bley, Andreas}, title = {On the Hardness of Finding Small Shortest Path Routing Conflicts}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11276}, number = {09-15}, abstract = {Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6.}, language = {en} }