@misc{Karbstein2014, author = {Karbstein, Marika}, title = {Integrated Line Planning and Passenger Routing: Connectivity and Transfers}, issn = {1438-0064}, doi = {10.1007/978-3-319-28697-6_37}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52986}, year = {2014}, abstract = {The integrated line planning and passenger routing problem is an important planning problem in service design of public transport. A major challenge is the treatment of transfers. A main property of a line system is its connectivity. In this paper we show that analysing the connecvitiy aspect of a line plan gives a new idea to handle the transfer aspect of the line planning problem.}, language = {en} } @phdthesis{Heismann2014, author = {Heismann, Olga}, title = {The Hypergraph Assignment Problem}, year = {2014}, abstract = {This thesis deals with the hypergraph assignment problem (HAP), a set partitioning problem in a special type of hypergraph. The HAP generalizes the assignment problem from bipartite graphs to what we call bipartite hypergraphs, and is motivated by applications in railway vehicle rotation planning. The main contributions of this thesis concern complexity, polyhedral results, analyses of random instances, and primal methods for the HAP. We prove that the HAP is NP-hard and APX-hard even for small hyperedge sizes and hypergraphs with a special partitioned structure. We also study the complexity of the set packing and covering relaxations of the HAP, and present for certain cases polynomial exact or approximation algorithms. A complete linear description is known for the assignment problem. We therefore also study the HAP polytope. There, we have a huge number of facet-defining inequalities already for a very small problem size. We describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of the polytope. We propose the algorithm "HUHFA" for the classification that is applicable not only to the HAP but combinatorial optimization problems involving symmetries in general. In the largest possible HAP instance for which we could calculate the complete linear description, we have 14049 facets, which can be divided into 30 symmetry classes. We can combinatorially interpret 16 of these classes. This is possible by employing cliques to generalize the odd set inequalities for the matching problem. The resulting inequalities are valid for the polytope associated with the set packing problem in arbitrary hypergraphs and have a clear combinatorial meaning. An analysis of random instances provides a better insight into the structure of hyperassignments. Previous work has extensively analyzed random instances for the assignment problem theoretically and practically. As a generalization of these results for the HAP, we prove bounds on the expected value of a minimum cost hyperassignment that uses half of the maximum possible number of hyperedges that are not edges. In a certain complete partitioned hypergraph G2,2n with i. i. d. exponential random variables with mean 1 as hyperedge costs it lies between 0.3718 and 1.8310 if the vertex number tends to infinity. Finally, we develop an exact combinatorial solution algorithm for the HAP that combines three methods: A very large-scale neighborhood search, the composite columns method for the set partitioning problem, and the network simplex algorithm.}, language = {en} } @misc{BorndoerferHoppmannKarbstein2015, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {Timetabling and Passenger Routing in Public Transport}, journal = {Appeard in: Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015)}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55305}, year = {2015}, abstract = {The task of timetabling is to schedule the trips in a public transport system by determining periodic arrival and departure times at every station. The goal is to provide a service that is both attractive for passengers and can be operated economically. To date, timetable optimization is generally done with respect to fixed passenger routes, i.e., it is assumed that passengers do not respond to changes in the timetable. This is unrealistic and ignores potentially valuable degrees of freedom. We investigate in this paper periodic timetabling models with integrated passenger routing. We propose several models that differ in the allowed passenger paths and the objectives. We compare these models theoretically and report on computations on real-world instances for the city of Wuppertal.}, language = {en} } @misc{BortolettoLindnerMasing2022, author = {Bortoletto, Enrico and Lindner, Niels and Masing, Berenike}, title = {The Tropical and Zonotopal Geometry of Periodic Timetables}, issn = {1438-0064}, arxiv = {http://arxiv.org/abs/2204.13501}, doi = {https://doi.org/10.1007/s00454-024-00686-2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86708}, year = {2022}, abstract = {The Periodic Event Scheduling Problem (PESP) is the standard mathematical tool for optimizing periodic timetabling problems in public transport. A solution to PESP consists of three parts: a periodic timetable, a periodic tension, and integer periodic offset values. While the space of periodic tension has received much attention in the past, we explore geometric properties of the other two components, establishing novel connections between periodic timetabling and discrete geometry. Firstly, we study the space of feasible periodic timetables, and decompose it into polytropes, i.e., polytopes that are convex both classically and in the sense of tropical geometry. We then study this decomposition and use it to outline a new heuristic for PESP, based on the tropical neighbourhood of the polytropes. Secondly, we recognize that the space of fractional cycle offsets is in fact a zonotope. We relate its zonotopal tilings back to the hyperrectangle of fractional periodic tensions and to the tropical neighbourhood of the periodic timetable space. To conclude we also use this new understanding to give tight lower bounds on the minimum width of an integral cycle basis.}, language = {en} } @article{BorndoerferDaneckerWeiser2021, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, volume = {14}, journal = {Algorithms}, number = {1}, publisher = {MDPI}, issn = {1438-0064}, doi = {10.3390/a14010004}, pages = {4}, year = {2021}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} } @misc{BorndoerferDaneckerWeiser2020, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {A Discrete-Continuous Algorithm for Free Flight Planning}, issn = {1438-0064}, doi = {10.3390/a14010004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81343}, year = {2020}, abstract = {We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.}, language = {en} }