@misc{Berthold, author = {Berthold, Timo}, title = {Primal MINLP Heuristics in a nutshell}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42170}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment shows that primal heuristics play a key role in achieving feasibility and finding good primal bounds within a global MINLP solver.}, language = {en} } @misc{GleixnerWeltge, author = {Gleixner, Ambros and Weltge, Stefan}, title = {Learning and Propagating Lagrangian Variable Bounds for Mixed-Integer Nonlinear Programming}, issn = {1438-0064}, doi = {10.1007/978-3-642-38171-3_26}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17631}, abstract = {Optimization-based bound tightening (OBBT) is a domain reduction technique commonly used in nonconvex mixed-integer nonlinear programming that solves a sequence of auxiliary linear programs. Each variable is minimized and maximized to obtain the tightest bounds valid for a global linear relaxation. This paper shows how the dual solutions of the auxiliary linear programs can be used to learn what we call Lagrangian variable bound constraints. These are linear inequalities that explain OBBT's domain reductions in terms of the bounds on other variables and the objective value of the incumbent solution. Within a spatial branch-and-bound algorithm, they can be learnt a priori (during OBBT at the root node) and propagated within the search tree at very low computational cost. Experiments with an implementation inside the MINLP solver SCIP show that this reduces the number of branch-and-bound nodes and speeds up solution times.}, language = {en} }