@misc{MaherFischerGallyetal., author = {Maher, Stephen J. and Fischer, Tobias and Gally, Tristan and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Robert Lion and Hendel, Gregor and Koch, Thorsten and L{\"u}bbecke, Marco and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 4.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62170}, abstract = {The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.}, language = {en} } @misc{BertholdGamrathGleixneretal., author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @misc{BertholdGleixnerHeinzetal., author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15598}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @misc{BleyGleixnerKochetal., author = {Bley, Andreas and Gleixner, Ambros and Koch, Thorsten and Vigerske, Stefan}, title = {Comparing MIQCP solvers to a specialised algorithm for mine production scheduling}, organization = {ZIB}, issn = {1438-0064}, doi = {10.1007/978-3-642-25707-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11507}, number = {09-32}, abstract = {In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.}, language = {en} }