@misc{BertholdGamrathGleixneretal.2012, author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, year = {2012}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @phdthesis{Schweiger2017, author = {Schweiger, Jonas}, title = {Exploiting structure in non-convex quadratic optimization and gas network planning under uncertainty}, pages = {411}, year = {2017}, abstract = {The amazing success of computational mathematical optimization over the last decades has been driven more by insights into mathematical structures than by the advance of computing technology. In this vein, we address applications, where nonconvexity in the model and uncertainty in the data pose principal difficulties. The first part of the thesis deals with non-convex quadratic programs. Branch\&Bound methods for this problem class depend on tight relaxations. We contribute in several ways: First, we establish a new way to handle missing linearization variables in the well-known Reformulation-Linearization-Technique (RLT). This is implemented into the commercial software CPLEX. Second, we study the optimization of a quadratic objective over the standard simplex or a knapsack constraint. These basic structures appear as part of many complex models. Exploiting connections to the maximum clique problem and RLT, we derive new valid inequalities. Using exact and heuristic separation methods, we demonstrate the impact of the new inequalities on the relaxation and the global optimization of these problems. Third, we strengthen the state-of-the-art relaxation for the pooling problem, a well-known non-convex quadratic problem, which is, for example, relevant in the petrochemical industry. We propose a novel relaxation that captures the essential non-convex structure of the problem but is small enough for an in-depth study. We provide a complete inner description in terms of the extreme points as well as an outer description in terms of inequalities defining its convex hull (which is not a polyhedron). We show that the resulting valid convex inequalities significantly strengthen the standard relaxation of the pooling problem. The second part of this thesis focuses on a common challenge in real world applications, namely, the uncertainty entailed in the input data. We study the extension of a gas transport network, e.g., from our project partner Open Grid Europe GmbH. For a single scenario this maps to a challenging non-convex MINLP. As the future transport patterns are highly uncertain, we propose a robust model to best prepare the network operator for an array of scenarios. We develop a custom decomposition approach that makes use of the hierarchical structure of network extensions and the loose coupling between the scenarios. The algorithm used the single-scenario problem as black-box subproblem allowing the generalization of our approach to problems with the same structure. The scenario-expanded version of this problem is out of reach for today's general-purpose MINLP solvers. Yet our approach provides primal and dual bounds for instances with up to 256 scenarios and solves many of them to optimality. Extensive computational studies show the impact of our work.}, language = {en} } @misc{BertholdHeinzVigerske2009, author = {Berthold, Timo and Heinz, Stefan and Vigerske, Stefan}, title = {Extending a CIP framework to solve MIQCPs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11371}, number = {09-23}, year = {2009}, abstract = {This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach.}, language = {en} } @misc{ChmielaMunozSerrano2021, author = {Chmiela, Antonia and Mu{\~n}oz, Gonzalo and Serrano, Felipe}, title = {On the implementation and strengthening of intersection cuts for QCQPs}, doi = {10.1007/978-3-030-73879-2_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79994}, year = {2021}, abstract = {The generation of strong linear inequalities for QCQPs has been recently tackled by a number of authors using the intersection cut paradigm - a highly studied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of maximal quadratic-free sets. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for quick cut-computations by simply plugging-in parameters associated to an arbitrary quadratic inequality being violated by a vertex of an LP relaxation. Additionally, we implement a cut-strengthening procedure that dates back to Glover and evaluate these techniques with extensive computational experiments.}, language = {en} }