@misc{Steinbach, author = {Steinbach, Marc}, title = {General Information Constraints in Stochastic Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6502}, number = {01-24}, abstract = {Scenario tree models of stochastic programs arise naturally under standard nonanticipativity assumptions. We demonstrate how tree-sparse programs cover the general case, with \emph{arbitrary} information constraints. Detailed examples and intuitive interpretations illuminate the basic thoughts behind the abstract but elementary construction.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Tree-Sparse Convex Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6340}, number = {01-08}, abstract = {Dynamic stochastic programs are prototypical for optimization problems with an inherent tree structure inducing characteristic sparsity patterns in the KKT systems of interior methods. We propose an integrated modeling and solution approach for such tree-sparse programs. Three closely related natural formulations are theoretically analyzed from a control-theoretic viewpoint and compared to each other. Associated KKT solution algorithms with linear complexity are developed and comparisons to other interior approaches and related problem formulations are discussed.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Robust Process Control by Dynamic Stochastic Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7959}, number = {04-20}, abstract = {Unnecessarily conservative behavior of standard process control techniques can be avoided by stochastic programming models when the distribution of random disturbances is known. In an earlier study we have investigated such an approach for tank level constraints of a distillation process. Here we address techniques that have accelerated the numerical solution of the large and expensive stochastic programs by a factor of six, and then present a refined optimization model for the same application.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Markowitz Revisited: Single-Period and Multi-Period Mean-Variance Models}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4183}, number = {SC-99-30}, abstract = {Mean-variance portfolio analysis provided the first quantitative treatment of the tradeoff between profit and risk. We investigate in detail the interplay between objective and constraints in a number of single-period variants, including semi-variance models. Particular emphasis is laid on avoiding the penalization of overperformance. The results are then used as building blocks in the development and theoretical analysis of multi-period models based on scenario trees. A key property is the possibility to remove surplus money in future decisions, yielding approximate downside risk minimization.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Recursive Direct Algorithms for Multistage Stochastic Programs in Financial Engineering}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3661}, number = {SC-98-23}, abstract = {Multistage stochastic programs can be seen as discrete optimal control problems with a characteristic dynamic structure induced by the scenario tree. To exploit that structure, we propose a highly efficient dynamic programming recursion for the computationally intensive task of KKT systems solution within an interior point method. Test runs on a multistage portfolio selection problem demonstrate the performance of the algorithm.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Recursive Direct Optimization and Successive Refinement in Multistage Stochastic Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3706}, number = {SC-98-27}, abstract = {The paper presents a new algorithmic approach for multistage stochastic programs which are seen as discrete optimal control problems with a characteristic dynamic structure induced by the scenario tree. To exploit that structure, we propose a highly efficient dynamic programming recursion for the computationally intensive task of KKT systems solution within a primal-dual interior point method. Convergence is drastically enhanced by a successive refinement technique providing both primal and dual initial estimates. Test runs on a multistage portfolio selection problem demonstrate the performance of the method.}, language = {en} } @misc{Steinbach, author = {Steinbach, Marc}, title = {Hierarchical Sparsity in Multistage Convex Stochastic Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5837}, number = {00-15}, abstract = {Interior point methods for multistage stochastic programs involve KKT systems with a characteristic global block structure induced by dynamic equations on the scenario tree. We generalize the recursive solution algorithm proposed in an earlier paper so that its linear complexity extends to a refined tree-sparse KKT structure. Then we analyze how the block operations can be specialized to take advantage of problem-specific sparse substructures. Savings of memory and operations for a financial engineering application are discussed in detail.}, language = {en} } @misc{HenrionLiMoelleretal., author = {Henrion, Rene and Li, Pu and M{\"o}ller, Andris and Steinbach, Marc and Wendt, Moritz and Wozny, G{\"u}nter}, title = {Stochastic Optimization for Operating Chemical Processes Under Uncertainty}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6304}, number = {01-04}, abstract = {Mathematical optimization techniques are on their way to becoming a standard tool in chemical process engineering. While such approaches are usually based on deterministic models, uncertainties such as external disturbances play a significant role in many real-life applications. The present article gives an introduction to practical issues of process operation and to basic mathematical concepts required for the explicit treatment of uncertainties by stochastic optimization.}, language = {en} } @misc{GarridoSteinbach, author = {Garrido, Izaskun and Steinbach, Marc}, title = {A Multistage Stochastic Programming Approach in Real-Time Process Control}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6317}, number = {01-05}, abstract = {Standard model predictive control for real-time operation of industrial production processes may be inefficient in the presence of substantial uncertainties. To avoid overly conservative disturbance corrections while ensuring safe operation, random influences should be taken into account explicitly. We propose a multistage stochastic programming approach within the model predictive control framework and apply it to a distillation process with a feed tank buffering external sources. A preliminary comparison to a probabilistic constraints approach is given and first computational results for the distillation process are presented.}, language = {en} }