@misc{HelmesRoehl, author = {Helmes, Kurt and R{\"o}hl, Stefan}, title = {A Geometrical Characterization of the Multidimensional Hausdorff and Dale Polytopes with Applications to Exit Time Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7807}, number = {04-05}, abstract = {We present formulae for the corner points of the multidimensional Hausdorff and Dale Polytopes and show how these results can be used to improve linear programming models for computing e.\,g.\ moments of exit distribution of diffusion processes. Specifically, we compute the mean exit time of twodimensional Brownian motion from the unit square and the unit triangle, as well as higher moments of the exit time of time space Brownian motion from a triangle.}, language = {en} } @misc{OrlowskiPioro, author = {Orlowski, Sebastian and Pi{\´o}ro, Michal}, title = {On the complexity of column generation in survivable network design with path-based survivability mechanisms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11058}, number = {08-51}, abstract = {This survey concerns optimization problems arising in the design of survivable communication networks. It turns out that such problems can be modeled in a natural way as non-compact linear programming formulations based on multicommodity flow network models. These non-compact formulations involve an exponential number of path flow variables, and therefore require column generation to be solved to optimality. We consider several path-based survivability mechanisms and present results, both known and new, on the complexity of the corresponding column generation problems (called the pricing problems). We discuss results for the case of the single link (or node) failures scenarios, and extend the considerations to multiple link failures. Further, we classify the design problems corresponding to different survivability mechanisms according to the structure of their pricing problem. Finally, we show that almost all encountered pricing problems are hard to solve for scenarios admitting multiple failures.}, language = {en} } @misc{Groetschel, author = {Gr{\"o}tschel, Martin}, title = {Verkehrsplanung: Bessere L{\"o}sungen mit Mathematik}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4439}, number = {SC-99-54}, abstract = {Anwendungen der Mathematik in der Verkehrs- und Transporttechnologie haben eine große und bedeutende Tradition. Nat{\"u}rlich wurden die ersten Fahrzeuge mit der ingenieurm{\"a}ßigen Methode von Versuch, Irrtum und Verbesserung entworfen. Aber schon sehr bald kamen mathematische Berechnungen hinzu, mit denen mechanische Eigenschaften von Fahrzeugteilen ermittelt und zum Teil optimiert wurden. Die hierzu erforderliche Mathematik wurde in diesem Jahrhundert zu einem m{\"a}chtigen Werkzeugkasten ausgebaut. Mit diesem kann man heute z.B. hocheffiziente Motoren mit geringem Schadstoffausstoß entwerfen, aerodynamisch g{\"u}nstige Fahrzeugprofile ermitteln und Flugzeugfl{\"u}gel berechnen, die die gew{\"u}nschte Last sicher und mit geringem Treibstoffaufwand tragen. Die Mathematik unterst{\"u}tzt die Technologie des Verkehrs beginnend bei globalen Designfragen bis hin zur Spezifizierung von Materialeigenschaften kleinster Bauteile; sie berechnet mit hoher Pr{\"a}zision energieoptimale Bahnen von Raumflugk{\"o}rpern oder zeitoptimale Trajektorien f{\"u}r Flugzeuge, steuert automatische Roboteranlagen oder innerbetriebliche Transportsysteme.}, language = {de} } @misc{BorndoerferSchlechteSwarat, author = {Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Swarat, Elmar}, title = {Railway Track Allocation - Simulation, Aggregation, and Optimization}, issn = {1438-0064}, doi = {10.1007/978-3-642-27963-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14031}, number = {11-35}, abstract = {Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway company. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market in Europe. This leads to more potential conflicts between trains caused by an increasing demand of train paths. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. In order to make best use of the infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithms can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and an associated concept for track allocation, that consists of three important parts, simulation, aggregation, and optimization. Furthermore, we present results of our general framework for real world data.}, language = {en} }