@misc{BorndoerferFriedowKarbstein, author = {Bornd{\"o}rfer, Ralf and Friedow, Isabel and Karbstein, Marika}, title = {Optimierung des Linienplans 2010 in Potsdam}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14486}, number = {12-04}, abstract = {Im Zuge der {\"U}bernahme von 6 Linien der Havelbus Verkehrsgesellschaft mbH durch die ViP Verkehr in Potsdam GmbH ergab sich 2009 die Notwendigkeit der Entwicklung eines neuen Linien- und Taktplans f{\"u}r das Jahr 2010. Das Konrad-Zuse-Zentrum f{\"u}r Informationstechnik Berlin (ZIB) entwickelt in einem Projekt des DFG-Forschungszentrums Matheon ein Verfahren zur mathematischen Linienoptimierung. Dieses Tool wurde bei der Optimierung des ViP Linienplans 2010 in einer projektbegleitenden Studie eingesetzt, um Alternativen bei verschiedenen Planungs- und Zielvorgaben auszuloten. In dem Artikel wird eine Auswertung der Ergebnisse mit dem Verkehrsanalysesystem Visum der PTV AG beschrieben. Die Auswertungen best{\"a}tigen, dass mit Hilfe von mathematischer Optimierung eine weitere Verk{\"u}rzung der Reisezeit um 1\%, eine als um 6\% verk{\"u}rzt empfundene Reisezeit, 10\% weniger Fahrzeit im Fahrzeug und eine gleichzeitige Kostenreduktion um 5\% m{\"o}glich sind.}, language = {de} } @phdthesis{Karbstein, author = {Karbstein, Marika}, title = {Line Planning and Connectivity}, isbn = {978-3-8439-1062-0}, abstract = {This thesis introduces the Steiner connectivity problem. It is a generalization of the well known Steiner tree problem. Given a graph G = (V, E) and a subset T ⊆ V of the nodes, the Steiner tree problem consists in finding a cost minimal set of edges connecting all nodes in T . The Steiner connectivity problem chooses, instead of edges, from a given set of paths a subset to connect all nodes in T . We show in the first part of this thesis that main results about complexity, approximation, integer programming formulations, and polyhedra can be generalized from the Steiner tree problem to the Steiner connectivity problem. An example for a straightforward generalization are the Steiner partition inequalities, a fundamental class of facet defining inequalities for the Steiner tree problem. They can be defined for the Steiner connectivity problem in an analogous way as for the Steiner tree problem. An example for a generalization that needs more effort is the definition of a directed cut formulation and the proof that this dominates the canonical undirected cut formulation enriched by all Steiner partition inequalities. For the Steiner connectivity problem this directed cut formulation leads to extended formulations, a concept that is not necessary for the Steiner tree problem. There are also major differences between both problems. For instance, the case T = V for the Steiner connectivity problem is equivalent to a set covering problem and, hence, not a polynomial solvable case as in the Steiner tree problem. The Steiner connectivity problem is not only an interesting generalization of the Steiner tree problem but also the underlying connectivity problem in line planning with inte- grated passenger routing. The integrated line planning and passenger routing problem is an important planning problem in service design of public transport and the topic of the second part. Given is the infrastructure network of a public transport system where the edges correspond to streets and tracks and the nodes correspond to stations/stops of lines. The task is to find paths in the infrastructure network for lines and passengers such that the capacities of the lines suffice to transport all passengers. Existing models in the literature that integrate a passenger routing in line planning either treat transfers in a rudimentary way and, hence, neglect an important aspect for the choice of the pas- senger routes, or they treat transfers in a too comprehensive way and cannot be solved for large scale real world problems. We propose a new model that focuses on direct connections. The attractiveness of transfer free connections is increased by introducing a transfer penalty for each non-direct connection. In this way, a passenger routing is computed that favors direct connections. For the computation of this model we also implemented algorithms influenced by the results for the Steiner connectivity problem. We can compute with our model good solutions that minimize a weighted sum of line operating costs and passengers travel times. These solutions improve the solutions of an existing approach, that does not consider direct connections, by up to 17\%. In contrast to a comprehensive approach, that considers every transfer and for which we could not even solve the root LP within 10 hours for large instances, the solutions of the new model, computed in the same time, are close to optimality (<1\%) or even optimal for real world instances. In a project with the Verkehr in Potsdam GmbH to compute the line plan for 2010 we showed that our approach is applicable in practice and can be used to solve real world problems.}, language = {en} } @misc{BorndoerferHoppmannKarbstein, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {Umsteigen ohne Warten}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62006}, abstract = {Wir stellen einen mathematischen Optimierungsansatz zur Berechnung von periodischen Taktfahrpl{\"a}nen vor, bei dem die Umsteigezeiten unter Ber{\"u}cksichtigung des Passagierverhaltens minimiert werden. Wir untersuchen damit den Einfluss wichtiger Systemparameter und Verhaltensmuster auf die Bef{\"o}rderungsqualit{\"a}t.}, language = {de} } @misc{BorndoerferKarbstein, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika}, title = {A Direct Connection Approach to Integrated Line Planning and Passenger Routing}, series = {ATMOS 2012 - 12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems}, volume = {25}, journal = {ATMOS 2012 - 12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems}, editor = {Delling, Daniel and Liberti, Leo}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum f{\"u}r Informatik}, issn = {1438-0064}, doi = {http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.47}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15812}, pages = {47 -- 57}, abstract = {The treatment of transfers is a major challenge in line planning. Existing models either route passengers and lines sequentially, and hence disregard essential degrees of freedom, or they are of extremely large scale, and seem to be computationally intractable. We propose a novel direct connection approach that allows an integrated optimization of line and passenger routing, including accurate estimates of the number of direct travelers, for large-scale real-world instances.}, language = {en} } @misc{BorndoerferKarbstein, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika}, title = {Metric Inequalities for Routings on Direct Connections with Application in Line Planning}, issn = {1438-0064}, doi = {10.1016/j.disopt.2015.07.004}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53507}, abstract = {We consider multi-commodity flow problems in which capacities are installed on paths. In this setting, it is often important to distinguish between flows on direct connection routes, using single paths, and flows that include path switching. We derive a feasibility condition for path capacities supporting such direct connection flows similar to the feasibility condition for arc capacities in ordinary multi-commodity flows. The concept allows to solve large-scale real-world line planning problems in public transport including a novel passenger routing model that favors direct connections over connections with transfers.}, language = {en} } @misc{Karbstein, author = {Karbstein, Marika}, title = {Integrated Line Planning and Passenger Routing: Connectivity and Transfers}, issn = {1438-0064}, doi = {10.1007/978-3-319-28697-6_37}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52986}, abstract = {The integrated line planning and passenger routing problem is an important planning problem in service design of public transport. A major challenge is the treatment of transfers. A main property of a line system is its connectivity. In this paper we show that analysing the connecvitiy aspect of a line plan gives a new idea to handle the transfer aspect of the line planning problem.}, language = {en} } @misc{BorndoerferKarbstein, author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika}, title = {Neue Planungsinstrumente nutzen: Das Verkehrsangebot verbessern und Kosten sparen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55439}, abstract = {Wir illustrieren anhand des Liniennetzes der Stadt Potsdam das Potenzial mathematischer Methoden der Angebotsplanung. Wir zeigen, dass das "bestm{\"o}gliche" Verkehrsangebot stark von planerischen Vorgaben beeinflusst wird, mit denen man die Erreichung unterschiedlicher und teilweise gegenl{\"a}ufiger Ziele steuern kann. Die Komplexit{\"a}t des Systems f{\"u}hrt zum Auftreten von R{\"u}ckkoppelungseffekten, die man nicht mit Hilfe von Daumenregeln beherrschen kann. Vielmehr ist der Einsatz moderner Planungsverfahren in einer interdisziplin{\"a}ren Zusammenarbeit von politischen Entscheidungstr{\"a}gern, Verkehrsingenieuren und Mathematikern notwendig, um die aktuellen Herausforderungen in der Verkehrsplanung zu meistern. Der Artikel dokumentiert einen Beitrag zum 7. {\"O}PNV Innovationskongress des Ministeriums f{\"u}r Verkehr und Infrastruktur des Landes Baden-W{\"u}rttemberg, der vom 9.-11. M{\"a}rz 2015 in Freiburg stattfand.}, language = {de} }