@misc{Bley, author = {Bley, Andreas}, title = {A Lagrangian Approach for Integrated Network Design and Routing in IP Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7515}, number = {03-29}, abstract = {We consider the problem of designing a network that employs a non-bifurcated shortest path routing protocol. The network's nodes and the set of potential links are given together with a set of forecasted end-to-end traffic demands. All relevant hardware components installable at links or nodes are considered. The goal is to simultaneously choose the network's topology, to decide which hardware components to install on which links and nodes, and to find appropriate routing weights such that the overall network cost is minimized. In this paper, we present a mathematical optimization model for this problem and an algorithmic solution approach based on a Lagrangian relaxation. Computational results achieved with this approach for several real-world network planning problems are reported.}, language = {en} } @misc{KosterZymolkaJaegeretal., author = {Koster, Arie M.C.A. and Zymolka, Adrian and J{\"a}ger, Monika and H{\"u}lsermann, Ralf and Gerlach, Christoph}, title = {Demand-wise Shared Protection for Meshed Optical Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7461}, number = {03-24}, abstract = {In this paper, a new shared protection mechanism for meshed optical networks is presented. Significant network design cost reductions can be achieved in comparison to the well-known 1+1 protection scheme. Demand-wise Shared Protection (DSP) bases on the diversification of demand routings and exploits the network connectivity to restrict the number of backup lightpaths needed to provide the desired level of prorection. Computational experiments approve the benefits of the concept DSP for cost efficient optical network designs.}, language = {en} } @misc{GeerdesKarl, author = {Geerdes, Hans-Florian and Karl, Holger}, title = {The Potential of Relaying in Cellular Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7641}, number = {03-42}, abstract = {Relaying is a protocol extension for cellular wireless computer networks; in order to utilize radio resources more efficiently, several hops are allowed within one cell. This paper investigates the principle potential of relaying by casting transmission scheduling as a mathematical optimization problem, namely, a linear program. We analyze the throughput gains showing that, irrespective of the concrete scheduling algorithm, performance gains of up to 30\\% on average for concrete example networks are achievable.}, language = {en} } @misc{Geerdes, author = {Geerdes, Hans-Florian}, title = {Assessing Capacity Improvements by Relaying in Cellular Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7651}, number = {03-43}, abstract = {Relaying -- allowing multiple wireless hops -- is a protocol extension for cellular networks conceived to improve data throughput. Its benefits have only been quantified for small example networks. For assessing its general potential, we define a complex resource allocation\slash{}scheduling problem. Several mathematical models are presented for this problem; while a time-expanded MIP approach turns out intractable, a sophisticated column generation scheme leads to good computational results. We thereby show that for selected cases relaying can increase data throughput by 30\\% on the average.}, language = {en} } @misc{KosterZymolka, author = {Koster, Arie M.C.A. and Zymolka, Adrian}, title = {Minimum Converter Wavelength Assignment in All-Optical Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7673}, number = {03-45}, abstract = {Finding conflict-free wavelength assignments with a minimum number of required conversions for a routing of the lightpaths is one of the important tasks within the design of all-optical networks. We consider this problem in multi-fiber networks with different types of WDM systems. We give a detailed description of the problem and derive its theoretical complexity. For practical application, we propose several sequential algorithms to compute appropriate wavelength assignments. We also perform computational experiments to evaluate their performance. For the iterative algorithms, we identify characteristic patterns of progression. Two of these algorithms qualify for application in practice.}, language = {en} }