@misc{Koster, author = {Koster, Arie M.C.A.}, title = {Wavelength Assignment in Multi-Fiber WDM Networks by Generalized Edge Coloring}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8478}, number = {05-13}, abstract = {In this paper, we study wavelength assignment problems in multi-fiber WDM networks. We focus on the special case that all lightpaths have at most two links. This in particular holds in case the network topology is a star. As the links incident to a specific node in a meshed topology form a star subnetwork, results for stars are also of interest for general meshed topologies. We show that wavelength assignment with at most two links per lightpath can be modeled as a generalized edge coloring problem. By this relation, we show that for a network with an even number of fibers at all links and at most two links per lightpath, all lightpaths can be assigned a wavelength without conversion. Moreover, we derive a lower bound on the number of lightpaths to be converted for networks with arbitrary numbers of fibers at the links. A comparison with linear programming lower bounds reveals that the bounds coincide for problems with at most two links per lightpath. For meshed topologies, the cumulative lower bound over all star subnetworks equals the best known solution value for all realistic wavelength assignment instances available, by this proving optimality.}, language = {en} } @misc{KosterZymolka, author = {Koster, Arie M.C.A. and Zymolka, Adrian}, title = {Linear Programming Lower Bounds for Minimum Converter Wavelength Assignment in Optical Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8160}, number = {04-41}, abstract = {In this paper, we study the conflict-free assignment of wavelengths to lightpaths in an optical network with the opportunity to place wavelength converters. To benchmark heuristics for the problem, we develop integer programming formulations and study their properties. Moreover, we study the computational performance of the column generation algorithm for solving the linear relaxation of the most promising formulation. In many cases, a non-zero lower bound on the number of required converters is generated this way. For several instances, we in fact prove optimality since the lower bound equals the best known solution value.}, language = {en} } @misc{KosterZymolka, author = {Koster, Arie M.C.A. and Zymolka, Adrian}, title = {Minimum Converter Wavelength Assignment in All-Optical Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7673}, number = {03-45}, abstract = {Finding conflict-free wavelength assignments with a minimum number of required conversions for a routing of the lightpaths is one of the important tasks within the design of all-optical networks. We consider this problem in multi-fiber networks with different types of WDM systems. We give a detailed description of the problem and derive its theoretical complexity. For practical application, we propose several sequential algorithms to compute appropriate wavelength assignments. We also perform computational experiments to evaluate their performance. For the iterative algorithms, we identify characteristic patterns of progression. Two of these algorithms qualify for application in practice.}, language = {en} } @phdthesis{Zymolka, author = {Zymolka, Adrian}, title = {Design of Survivable Optical Networks by Mathematical Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10408}, abstract = {Abstract The cost-efficient design of survivable optical telecommunication networks is the topic of this thesis. In cooperation with network operators, we have developed suitable concepts and mathematical optimization methods to solve this comprehensive planning task in practice. Optical technology is more and more employed in modern telecommunication networks. Digital information is thereby transmitted as short light pulses through glass fibers. Moreover, the optical medium allows for simultaneous transmissions on a single fiber by use of different wavelengths. Recent optical switches enable a direct forwarding of optical channels in the network nodes without the previously required signal retransformation to electronics. Their integration creates ongoing optical connections,which are called lightpaths. We study the problem of finding cost-efficient configurations of optical networks which meet specified communication requirements. A configuration comprises the determination of all lightpaths to establish as well as the detailed allocation of all required devices and systems. We use a flexible modeling framework for a realistic representation of the networks and their composition. For different network architectures, we formulate integer linear programs which model the design task in detail. Moreover, network survivability is an important issue due to the immense bandwidths offered by optical technology. Operators therefore request for designs which perpetuate protected connections and guarantee for a defined minimum throughput in case of malfunctions. In order to achieve an effective realization of scalable protection, we present a novel survivability concept tailored to optical networks and integrate several variants into the models. Our solution approach is based on a suitable model decomposition into two subtasks which separates two individually hard subproblems and enables this way to compute cost-efficient designs with approved quality guarantee. The first subtask consists of routing the connections with corresponding dimensioning of capacities and constitutes a common core task in the area of network planning. Sophisticated methods for such problems have already been developed and are deployed by appropriate integration. The second subtask is characteristic for optical networks and seeks for a conflict-free assignment of available wavelengths to the lightpaths using a minimum number of involved wavelength converters. For this coloring-like task, we derive particular models and study methods to estimate the number of unavoidable conversions. As constructive approach, we develop heuristics and an exact branch-and-price algorithm. Finally, we carry out an extensive computational study on realistic data, provided by our industrial partners. As twofold purpose, we demonstrate the potential of our approach for computing good solutions with quality guarantee, and we exemplify its flexibility for application to network design and analysis.}, language = {en} }