@misc{GeerdesKarl, author = {Geerdes, Hans-Florian and Karl, Holger}, title = {The Potential of Relaying in Cellular Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7641}, number = {03-42}, abstract = {Relaying is a protocol extension for cellular wireless computer networks; in order to utilize radio resources more efficiently, several hops are allowed within one cell. This paper investigates the principle potential of relaying by casting transmission scheduling as a mathematical optimization problem, namely, a linear program. We analyze the throughput gains showing that, irrespective of the concrete scheduling algorithm, performance gains of up to 30\\% on average for concrete example networks are achievable.}, language = {en} } @misc{Geerdes, author = {Geerdes, Hans-Florian}, title = {Assessing Capacity Improvements by Relaying in Cellular Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7651}, number = {03-43}, abstract = {Relaying -- allowing multiple wireless hops -- is a protocol extension for cellular networks conceived to improve data throughput. Its benefits have only been quantified for small example networks. For assessing its general potential, we define a complex resource allocation\slash{}scheduling problem. Several mathematical models are presented for this problem; while a time-expanded MIP approach turns out intractable, a sophisticated column generation scheme leads to good computational results. We thereby show that for selected cases relaying can increase data throughput by 30\\% on the average.}, language = {en} } @misc{Bley, author = {Bley, Andreas}, title = {An Integer Programming Algorithm for Routing Optimization in IP Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10814}, number = {08-30}, abstract = {Most data networks nowadays use shortest path protocols to route the traffic. Given administrative routing lengths for the links of the network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. In this paper, we present an integer programming algorithm for the minimum congestion unsplittable shortest path routing problem, which arises in the operational planning of such networks. Given a capacitated directed graph and a set of communication demands, the goal is to find routing lengths that define a unique shortest path for each demand and minimize the maximum congestion over all links in the resulting routing. We illustrate the general decomposition approach our algorithm is based on, present the integer and linear programming models used to solve the master and the client problem, and discuss the most important implementational aspects. Finally, we report computational results for various benchmark problems, which demonstrate the efficiency of our algorithm.}, language = {en} }