@misc{FroylandKochMegowetal., author = {Froyland, Gary and Koch, Thorsten and Megow, Nicole and Duane, Emily and Wren, Howard}, title = {Optimizing the Landside Operation of a Container Terminal}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9004}, number = {06-06}, abstract = {This paper concerns the problem of operating a landside container exchange area that is serviced by multiple semi-automated rail mounted gantry cranes (RMGs) that are moving on a single bi-directional traveling lane. Such a facility is being built by Patrick Corporation at the Port Botany terminal in Sydney. The gantry cranes are a scarce resource and handle the bulk of container movements. Thus, they require a sophisticated analysis to achieve near optimal utilization. We present a three stage algorithm to manage the container exchange facility, including the scheduling of cranes, the control of associated short-term container stacking, and the allocation of delivery locations for trucks and other container transporters. The key components of our approach are a time scale decomposition, whereby an integer program controls decisions across a long time horizon to produce a balanced plan that is fed to a series of short time scale online subproblems, and a highly efficient space-time divisioning of short term storage areas. A computational evaluation shows that our heuristic can find effective solutions for the planning problem; on real-world data it yields a solution at most~8\\% above a lower bound on optimal RMG utilization.}, language = {en} } @misc{BorndoerferSagnolSwarat, author = {Bornd{\"o}rfer, Ralf and Sagnol, Guillaume and Swarat, Elmar}, title = {An IP Approach to Toll Enforcement Optimization on German Motorways}, issn = {1438-0064}, doi = {10.1007/978-3-642-29210-1_51}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14299}, number = {11-42}, abstract = {This paper proposes the first model for toll enforcement optimization on German motorways. The enforcement is done by mobile control teams and our goal is to produce a schedule achieving network-wide control, proportional to spatial and time-dependent traffic distributions. Our model consists of two parts. The first plans control tours using a vehicle routing approach with profits and some side constraints. The second plans feasible rosters for the control teams. Both problems can be modeled as Multi-Commodity Flow Problems. Adding additional coupling constraints produces a large-scale integrated integer programming formulation. We show that this model can be solved to optimality for real world instances associated with a control area in East Germany.}, language = {en} } @misc{BorndoerferSagnolSwarat, author = {Bornd{\"o}rfer, Ralf and Sagnol, Guillaume and Swarat, Elmar}, title = {A Case Study on Optimizing Toll Enforcements on Motorways}, issn = {1438-0064}, doi = {10.4230/OASIcs.SCOR.2012.1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15498}, abstract = {In this paper we present the problem of computing optimal tours of toll inspectors on German motorways. This problem is a special type of vehicle routing problem and builds up an integrated model, consisting of a tour planning and a duty rostering part. The tours should guarantee a network-wide control whose intensity is proportional to given spatial and time dependent traffic distributions. We model this using a space-time network and formulate the associated optimization problem by an integer program (IP). Since sequential approaches fail, we integrated the assignment of crews to the tours in our model. In this process all duties of a crew member must fit in a feasible roster. It is modeled as a Multi-Commodity Flow Problem in a directed acyclic graph, where specific paths correspond to feasible rosters for one month. We present computational results in a case-study on a German subnetwork which documents the practicability of our approach.}, language = {en} }