@misc{PfetschBorndoerfer2005, author = {Pfetsch, Marc and Bornd{\"o}rfer, Ralf}, title = {Routing in Line Planning for Public Transportation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8706}, number = {05-36}, year = {2005}, abstract = {The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a network such that a giv en demand can be satisfied. There are two objectives. Passengers want to minimize travel times, the transport company wishes to minimize operating costs. We investigate three variants of a multi-commo dity flow model for line planning that differ with respect to passenger routings. The first model allows arbitrary routings, the second only unsplittable routings, and the third only shortest path rou tings with respect to the network. We compare these models theoretically and computationally on data for the city of Potsdam.}, language = {en} } @misc{FroylandKochMegowetal.2006, author = {Froyland, Gary and Koch, Thorsten and Megow, Nicole and Duane, Emily and Wren, Howard}, title = {Optimizing the Landside Operation of a Container Terminal}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9004}, number = {06-06}, year = {2006}, abstract = {This paper concerns the problem of operating a landside container exchange area that is serviced by multiple semi-automated rail mounted gantry cranes (RMGs) that are moving on a single bi-directional traveling lane. Such a facility is being built by Patrick Corporation at the Port Botany terminal in Sydney. The gantry cranes are a scarce resource and handle the bulk of container movements. Thus, they require a sophisticated analysis to achieve near optimal utilization. We present a three stage algorithm to manage the container exchange facility, including the scheduling of cranes, the control of associated short-term container stacking, and the allocation of delivery locations for trucks and other container transporters. The key components of our approach are a time scale decomposition, whereby an integer program controls decisions across a long time horizon to produce a balanced plan that is fed to a series of short time scale online subproblems, and a highly efficient space-time divisioning of short term storage areas. A computational evaluation shows that our heuristic can find effective solutions for the planning problem; on real-world data it yields a solution at most~8\\% above a lower bound on optimal RMG utilization.}, language = {en} } @misc{BorndoerferGroetschelPfetsch2005, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and Pfetsch, Marc}, title = {A Column-Generation Approach to Line Planning in Public Transport}, doi = {/10.1287/trsc.1060.0161}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8522}, number = {05-18}, year = {2005}, abstract = {The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize operating costs, the passengers want to minimize travel times. We propose a n ew multi-commodity flow model for line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. We discuss properties of this model and investigate its complexity. Results with data for the city of Potsdam, Germany, are reported.}, language = {en} } @misc{BorndoerferLoebelStrubbeetal.1998, author = {Bornd{\"o}rfer, Ralf and L{\"o}bel, Andreas and Strubbe, Uwe and V{\"o}lker, Manfred}, title = {Zielorientierte Dienstplanoptimierung}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3847}, number = {SC-98-41}, year = {1998}, abstract = {Dieser Artikel behandelt einen Ansatz zur zielorientierten Optimierung der Dienstplanung im {\"O}PNV. Der Ansatz zielt auf die vollst{\"a}ndige Ausnutzung aller planerischen Freiheitsgrade unter korrekter Ber{\"u}cksichtigung von gesetzlichen, tariflichen, technischen und betrieblichen Rahmenbedingungen. Er basiert auf mathematischen Optimierungstechniken, die wir gegenw{\"a}rtig in einem vom Bundesministerium f{\"u}r Bildung und Forschung ({\tt bmb+f}) gef{\"o}rderten Verbundprojekt in einer Kooperation zwischen der HanseCom GmbH, der IVU GmbH und dem Konrad-Zuse-Zentrum f{\"u}r Informationstechnik Berlin entwickeln. Es ist geplant, das Verfahren in die Softwareprodukte HOT II, MICROBUS II und OPUS zu integrieren. Verhandlungen mit den Berliner Verkehrsbetrieben {\"u}ber eine Projektbeteiligung und Integration unserer Software in BERTA sind zur Zeit im Gang. Wir beschreiben die Methodik des Ansatzes, diskutieren Aspekte seiner praktischen Verwendung, und wir berichten {\"u}ber den Stand der Entwicklung.}, language = {de} } @misc{AscheuerGroetschelKrumkeetal.1998, author = {Ascheuer, Norbert and Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Combinatorial Online Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3674}, number = {SC-98-24}, year = {1998}, abstract = {In ``classical'' optimization, all data of a problem instance are considered given. The standard theory and the usual algorithmic techniques apply to such cases only. Online optimization is different. Many decisions have to be made before all data are available. In addition, decisions once made cannot be changed. How should one act ``best'' in such an environment? In this paper we survey online problems coming up in combinatorial optimization. We first outline theoretical concepts, such as competitiveness against various adversaries, to analyze online problems and algorithms. The focus, however, lies on real-world applications. We report, in particular, on theoretical investigations and our practical experience with problems arising in transportation and the automatic handling of material.}, language = {en} } @misc{AbdelHamidAscheuerGroetschel1998, author = {Abdel-Hamid, Atef Abdel-Aziz and Ascheuer, Norbert and Gr{\"o}tschel, Martin}, title = {Order Picking in an Automatic Warehouse: Solving Online Asymmetric TSPs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3519}, number = {SC-98-08}, year = {1998}, abstract = {We report on a joint project with industry that had the aim to sequence transportation requests within an automatic storage system in such a way that the overall travel time is minimized. The manufacturing environment is such that scheduling decisions have to be made before all jobs are known. We have modeled this task as an \emph{online} Asymmetric Traveling Salesman Problem (ATSP). Several heuristics for the online ATSP are compared computationally within a simulation environment to judge which should be used in practice. Compared to the priority rule used so far, the optimization package reduced the unloaded travel time by about 40~\\%. Because of these significant savings our procedure was implemented as part of the control software for the stacker cranes of the storage systems.}, language = {en} } @misc{BorndoerferGroetschelLoebel1998, author = {Bornd{\"o}rfer, Ralf and Gr{\"o}tschel, Martin and L{\"o}bel, Andreas}, title = {Optimization of Transportation Systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3529}, number = {SC-98-09}, year = {1998}, abstract = {The world has experienced two hundred years of unprecedented advances in vehicle technology, transport system development, and traffic network extension. Technical progress continues but seems to have reached some limits. Congestion, pollution, and increasing costs have created, in some parts of the world, a climate of hostility against transportation technology. Mobility, however, is still increasing. What can be done? There is no panacea. Interdisciplinary cooperation is necessary, and we are going to argue in this paper that {\em Mathematics\/} can contribute significantly to the solution of some of the problems. We propose to employ methods developed in the {\em Theory of Optimization\/} to make better use of resources and existing technology. One way of optimization is better planning. We will point out that {\em Discrete Mathematics\/} provides a suitable framework for planning decisions within transportation systems. The mathematical approach leads to a better understanding of problems. Precise and quantitative models, and advanced mathematical tools allow for provable and reproducible conclusions. Modern computing equipment is suited to put such methods into practice. At present, mathematical methods contribute, in particular, to the solution of various problems of {\em operational planning}. We report about encouraging {\em results\/} achieved so far.}, language = {en} } @misc{AscheuerKrumkeRambau1998, author = {Ascheuer, Norbert and Krumke, Sven and Rambau, J{\"o}rg}, title = {The Online Transportation Problem: Competitive Scheduling of Elevators}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3779}, number = {SC-98-34}, year = {1998}, abstract = {In this paper we consider the following online transportation problem (\textsc{Oltp}): Objects are to be transported between the vertices of a given graph. Transportation requests arrive online, specifying the objects to be transported and the corresponding source and target vertex. These requests are to be handled by a server which commences its work at a designated origin vertex and which picks up and drops objects at their starts and destinations. After the end of its service the server returns to its start. The goal of \textsc{Oltp} is to come up with a transportation schedule for the server which finishes as early as possible. We first show a lower bound of~\$5/3\$ for the competitive ratio of any deterministic algorithm. We then analyze two simple and natural strategies which we call \textsf{REPLAN} and \textsf{IGNORE}. \textsf{REPLAN} completely discards its schedule and recomputes a new one when a new request arrives. \textsf{IGNORE} always runs a (locally optimal) schedule for a set of known requests and ignores all new requests until this schedule is completed. We show that both strategies, \textsf{REPLAN} and \textsf{IGNORE}, are \$5/2\$-competitive. We also present a somewhat less natural strategy \textsf{SLEEP}, which in contrast to the other two strategies may leave the server idle from time to time although unserved requests are known. We also establish a competitive ratio of~\$5/2\$ for the algorithm \textsf{SLEEP}. Our results are extended to the case of ``open schedules'' where the server is not required to return to its start position at the end of its service.}, language = {en} } @misc{KrumkeRambauTorres2002, author = {Krumke, Sven and Rambau, J{\"o}rg and Torres, Luis Miguel}, title = {Online-Dispatching of Automobile Service Units}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7117}, number = {02-44}, year = {2002}, abstract = {We present an online algorithm for a real-world vehicle dispatching problem at ADAC, the German Automobile Association.}, language = {en} } @misc{GroetschelKrumkeRambauetal.2002, author = {Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg and Torres, Luis Miguel}, title = {Making the Yellow Angels Fly: Online Dispatching Of Service Vehicles in Real Time}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6858}, number = {02-18}, year = {2002}, abstract = {Combinatorial online optimization is an area with lots of applications and potential for significant progress, both in theory and practice. In this short note we sketch the ADACproblem, a typical large-scale online optimization problem, discuss some theoretical and pratical issues coming up, and explain, very briefly, how we approach this problem mathematically. Online problems are a battlefield of heuristics with many strong claims about their solution quality. We indicate that a stronger problem orientation and the use of a little more mathematics may yield.}, language = {en} }