@misc{Hoppmann, type = {Master Thesis}, author = {Hoppmann, Heide}, title = {A Configuration Model for the Line Planning Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51610}, pages = {108}, abstract = {In this thesis we present a novel extended formulation for the line planning problem that is based on what we call "configurations" of lines and frequencies. Configurations are combinatorial building blocks of primal solutions; they rule out the "capacity numerics" and make the problem purely combinatorial. The concept of configurations can also be adapted to other capacitated network design problems. The configuration model is strong in the sense that it implies several facet-defining inequalities for the standard model: set cover, symmetric band, multicover, and MIR inequalities. These theoretical findings can be confirmed in computations, however, the enormous number of configurations can blow up the formulation for large instances. We propose a mixed model that enriches the standard model by a judiciously chosen subset of configurations that provide a good compromise between model strength and size. Computational results for large-scale line planning problems are presented.}, language = {en} } @misc{BorndoerferHoppmannKarbstein, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {Umsteigen ohne Warten}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62006}, abstract = {Wir stellen einen mathematischen Optimierungsansatz zur Berechnung von periodischen Taktfahrpl{\"a}nen vor, bei dem die Umsteigezeiten unter Ber{\"u}cksichtigung des Passagierverhaltens minimiert werden. Wir untersuchen damit den Einfluss wichtiger Systemparameter und Verhaltensmuster auf die Bef{\"o}rderungsqualit{\"a}t.}, language = {de} } @misc{BorndoerferHoppmannKarbstein, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {A Configuration Model for the Line Planning Problem}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2013.68}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-41903}, abstract = {We propose a novel extended formulation for the line planning problem in public transport. It is based on a new concept of frequency configurations that account for all possible options to provide a required transportation capacity on an infrastructure edge. We show that this model yields a strong LP relaxation. It implies, in particular, general classes of facet defining inequalities for the standard model.}, language = {en} } @misc{BorndoerferHoppmannKarbstein, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {Passenger Routing for Periodic Timetable Optimization}, issn = {1438-0064}, doi = {10.1007/s12469-016-0132-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56739}, abstract = {The task of periodic timetabling is to schedule the trips in a public transport system by determining arrival and departure times at every station such that travel and transfer times are minimized. To date, the optimization literature generally assumes that passengers do not respond to changes in the timetable, i.e., the passenger routes are fixed. This is unrealistic and ignores potentially valuable degrees of freedom. We investigate in this paper periodic timetabling models with integrated passenger routing. We show that different routing models have a huge influence on the quality of the entire system: Whatever metric is applied, the performance ratios of timetables w.r.t. to different routing models can be arbitrarily large. Computations on a real-world instance for the city of Wuppertal substantiate the theoretical findings. These results indicate the existence of untapped optimization potentials that can be used to improve the efficiency of public transport systems.}, language = {en} } @misc{BorndoerferHoppmannKarbstein, author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika}, title = {Timetabling and Passenger Routing in Public Transport}, series = {Appeard in: Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015)}, journal = {Appeard in: Proceedings of Conference on Advanced Systems in Public Transport 2015 (CASPT2015)}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55305}, abstract = {The task of timetabling is to schedule the trips in a public transport system by determining periodic arrival and departure times at every station. The goal is to provide a service that is both attractive for passengers and can be operated economically. To date, timetable optimization is generally done with respect to fixed passenger routes, i.e., it is assumed that passengers do not respond to changes in the timetable. This is unrealistic and ignores potentially valuable degrees of freedom. We investigate in this paper periodic timetabling models with integrated passenger routing. We propose several models that differ in the allowed passenger paths and the objectives. We compare these models theoretically and report on computations on real-world instances for the city of Wuppertal.}, language = {en} }