@misc{EisenblaetterGroetschelKoster, author = {Eisenbl{\"a}tter, Andreas and Gr{\"o}tschel, Martin and Koster, Arie M.C.A.}, title = {Frequency Planning and Ramifications of Coloring}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6152}, number = {00-47}, abstract = {This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical and organizational side constraints. Among these ramifications are \$T\$-coloring and list coloring. To model all the subtleties, the techniques of integer programming have proven to be very useful. The ability to produce good frequency plans in practice is essential for the quality of mobile phone networks. The present algorithmic solution methods employ variants of some of the traditional coloring heuristics as well as more sophisticated machinery from mathematical programming. This paper will also address this issue. Finally, this paper discusses several practical frequency assignment problems in detail, states the associated mathematical models, and also points to public electronic libraries of frequency assignment problems from practice. The associated graphs have up to several thousand nodes and range from rather sparse to almost complete.}, language = {en} } @phdthesis{Helmberg, author = {Helmberg, Christoph}, title = {Semidefinite Programming for Combinatorial Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6022}, number = {00-34}, abstract = {This book offers a self-contained introduction to the field of semidefinite programming, its applications in combinatorial optimization, and its computational methods. We equip the reader with the basic results from linear algebra on positive semidefinite matrices and the cone spanned by them. Starting from linear programming, we introduce semidefinite programs and discuss the associated duality theory. We then turn to semidefinite relaxations of combinatorial optimization and illustrate their interrelation. In the second half we deal with computational methods for solving semidefinite programs. First, the interior point approach, its iteration complexity, and implementational issues are discussed. Next, we explain in great detail the spectral bundle method, which is particularly suited for large scale semidefinite programming. One of the most successful techniques in integer linear programming is the cutting plane approach which improves an initial relaxation by adding violated inequalities. We explore possibilities to combine the two solution methods with the cutting plane approach in order to strengthen semidefinite relaxations of combinatorial optimization problems.}, language = {en} }