@misc{GroetschelBorndoerfer, author = {Gr{\"o}tschel, Martin and Bornd{\"o}rfer, Ralf}, title = {Mathematik im Verkehr}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50287}, abstract = {Nach einem kurzen Abriss {\"u}ber die Bedeutung des Verkehrssektors als eine wichtige Schl{\"u}sseltechnologie im gesamten Verlauf der Menschheitsgeschichte skizzieren wir die Rolle der Mathematik f{\"u}r Verkehr und Transport. Wir spekulieren dann {\"u}ber zuk{\"u}nftige Entwicklungen, insbesondere im Bereich des {\"o}ffentlichen Personenverkehrs, und begr{\"u}nden, dass die in diesem Bereich anstehenden Herausforderungen nur mit dem Einsatz mathematischer Methoden angemessen bew{\"a}ltigt werden k{\"o}nnen. Die demographischen Prozesse, die in verschiedenen Teilen der Welt unterschiedlich verlaufen, wie z.B. {\"U}beralterung in Europa oder dynamische Trends zu Megast{\"a}dten in Entwicklungsl{\"a}ndern, sich {\"a}ndernde Lebens- und Produktionsverh{\"a}ltnisse, stark wachsender Bedarf nach Mobilit{\"a}t und enormes Anwachsen der Komplexit{\"a}t der Verkehrsplanung und -durchf{\"u}hrung, machen einen verst{\"a}rkten Zugriff auf mathematische Modellierung, Simulation und Optimierung notwendig. Diese Entwicklung stellt sowohl große Herausforderungen an die Mathematik, wo vielfach noch keine geeigneten Methoden vorhanden sind, als auch an die Praktiker im Bereich von Verkehr und Transport, die sich mit neuen Planungs- und Steuerungstechnologien befassen und diese effizient einsetzen m{\"u}ssen. Hier wird intensive Kooperation zwischen vielen beteiligten Akteuren gefragt sein.}, language = {de} } @misc{MaristanydelasCasasSedenoNodaBorndoerfer2021, author = {Maristany de las Casas, Pedro and Sedeno-Noda, Antonio and Bornd{\"o}rfer, Ralf}, title = {An Improved Multiobjective Shortest Path Algorithm}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79712}, year = {2021}, abstract = {We present a new label-setting algorithm for the Multiobjective Shortest Path (MOSP) problem that computes the minimal complete set of efficient paths for a given instance. The size of the priority queue used in the algorithm is bounded by the number of nodes in the input graph and extracted labels are guaranteed to be efficient. These properties allow us to give a tight output-sensitive running time bound for the new algorithm that can almost be expressed in terms of the running time of Dijkstra's algorithm for the Shortest Path problem. Hence, we suggest to call the algorithm \emph{Multiobjective Dijkstra Algorithm} (MDA). The simplified label management in the MDA allows us to parallelize some subroutines. In our computational experiments, we compare the MDA and the classical label-setting MOSP algorithm by Martins', which we improved using new data structures and pruning techniques. On average, the MDA is \$\times2\$ to \$\times9\$ times faster on all used graph types. On some instances the speedup reaches an order of magnitude.}, language = {en} }