@misc{EisenblaetterGroetschelKoster, author = {Eisenbl{\"a}tter, Andreas and Gr{\"o}tschel, Martin and Koster, Arie M.C.A.}, title = {Frequency Planning and Ramifications of Coloring}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6152}, number = {00-47}, abstract = {This paper surveys frequency assignment problems coming up in planning wireless communication services. It particularly focuses on cellular mobile phone systems such as GSM, a technology that revolutionizes communication. Traditional vertex coloring provides a conceptual framework for the mathematical modeling of many frequency planning problems. This basic form, however, needs various extensions to cover technical and organizational side constraints. Among these ramifications are \$T\$-coloring and list coloring. To model all the subtleties, the techniques of integer programming have proven to be very useful. The ability to produce good frequency plans in practice is essential for the quality of mobile phone networks. The present algorithmic solution methods employ variants of some of the traditional coloring heuristics as well as more sophisticated machinery from mathematical programming. This paper will also address this issue. Finally, this paper discusses several practical frequency assignment problems in detail, states the associated mathematical models, and also points to public electronic libraries of frequency assignment problems from practice. The associated graphs have up to several thousand nodes and range from rather sparse to almost complete.}, language = {en} } @misc{EisenblaetterGroetschelKoster, author = {Eisenbl{\"a}tter, Andreas and Gr{\"o}tschel, Martin and Koster, Arie M.C.A.}, title = {Frequenzplanung im Mobilfunk}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6762}, number = {02-09}, abstract = {Telekommunikation ist seit Jahren \glqq in\grqq. Zun{\"a}chst gab es einen enormen Aufschwung; neue Technologien und Dienste haben eine {\"u}berw{\"a}ltigende, nicht vorhersehbare Akzeptanz gefunden. Derzeit ist -- ausgel{\"o}st durch die UMTS-Lizenzversteigerungen, Rezessions- und S{\"a}ttigungstendenzen -- eine Krise zu verzeichnen. Viele (auch wir) sind davon {\"u}berzeugt, dass technischer Fortschritt und n{\"u}tzliche Dienste demn{\"a}chst die Stimmung wieder {\"a}ndern werden. Wenigen ist allerdings bewusst, welche Rolle Mathematik bei der Entwicklung und dem effizienten Einsatz vieler der neuen Kommunikationstechnologien spielt. In diesem Artikel soll kein {\"U}berblick {\"u}ber diesen umfangreichen Themenkreis gegeben werden. Wir zeigen lediglich an einem konkreten Beispiel aus dem Mobilfunk, der Frequenzplanung in GSM-Funknetzen, was man durch geeignete Modellierung der praktischen Fragestellung und den Einsatz problemad{\"a}quater Algorithmen erreichen kann.}, language = {de} } @misc{AardalHoeselKosteretal., author = {Aardal, Karen I. and Hoesel, Stan P.M. van and Koster, Arie M.C.A. and Mannino, Carlo and Sassano, Antonio}, title = {Models and Solution Techniques for Frequency Assignment Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6667}, number = {01-40}, abstract = {{\begin{rawhtml} Revised Version unter http://dx.doi.org/10.1007/s10479-007-0178-0 \end{rawhtml}} Wireless communication is used in many different situations such as mobile telephony, radio and TV broadcasting, satellite communication, and military operations. In each of these situations a frequency assignment problem arises with application specific characteristics. Researchers have developed different modelling ideas for each of the features of the problem, such as the handling of interference among radio signals, the availability of frequencies, and the optimization criterion. This survey gives an overview of the models and methods that the literature provides on the topic. We present a broad description of the practical settings in which frequency assignment is applied. We also present a classification of the different models and formulations described in the literature, such that the common features of the models are emphasized. The solution methods are divided in two parts. Optimization and lower bounding techniques on the one hand, and heuristic search techniques on the other hand. The literature is classified according to the used methods. Again, we emphasize the common features, used in the different papers. The quality of the solution methods is compared, whenever possible, on publicly available benchmark instances.}, language = {en} } @misc{AbboudGroetschelKoch, author = {Abboud, Nadine and Gr{\"o}tschel, Martin and Koch, Thorsten}, title = {Mathematical Methods for Physical Layout of Printed Circuit Boards: An Overview}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9231}, number = {06-29}, abstract = {This article surveys mathematical models and methods used for physical PCB layout, i.e., component placement and wire routing. The main concepts are briefly described together with relevant references.}, language = {en} } @phdthesis{Bley, author = {Bley, Andreas}, title = {Routing and Capacity Optimization for IP Networks}, isbn = {978-3-86727-281-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-15530}, abstract = {This thesis is concerned with dimensioning and routing optimization problems for communication networks that employ a shortest path routing protocol such as OSPF, IS-IS, or RIP. These protocols are widely used in the Internet. With these routing protocols, all end-to-end data streams are routed along shortest paths with respect to a metric of link lengths. The network administrator can configure the routing only by modifying this metric. In this thesis we consider the unsplittable shortest path routing variant, where each communication demand must be sent unsplit through the network. This requires that all shortest paths are uniquely determined. The major difficulties in planning such networks are that the routing can be controlled only indirectly via the routing metric and that all routing paths depend on the same routing metric. This leads to rather complicated and subtle interdependencies among the paths that comprise a valid routing. In contrast to most other routing schemes, the paths for different communication demands cannot be configured independent of each other. Part I of the thesis is dedicated to the relation between path sets and routing metrics and to the combinatorial properties of those path sets that comprise a valid unsplittable shortest path routing. Besides reviewing known approaches to find a compatible metric for a given path set (or to prove that none exists) and discussing some properties of valid path sets, we show that the problem of finding a compatible metric with integer lengths as small as possible and the problem of finding a smallest possible conflict in the given path set are both NP-hard to approximate within a constant factor. In Part II of the thesis we discuss the relation between unsplittable shortest path routing and several other routing schemes and we analyze the computational complexity of three basic unsplittable shortest path routing problems. We show that the lowest congestion that can be obtained with unsplittable shortest path routing may significantly exceed that achievable with other routing paradigms and we prove several non-approximability results for unsplittable shortest path routing problems that are stronger than those for the corresponding unsplittable flow problems. In addition, we derive various polynomial time approximation algorithms for general and special cases of these problems. In Part III of the thesis we finally develop an integer linear programming approach to solve these and more realistic unsplittable shortest path routing problems to optimality. We present alternative formulations for these problems, discuss their strength and computational complexity, and show how to derive strong valid inequalities. Eventually, we describe our implementation of this solution approach and report on the numerical results obtained for real-world problems that came up in the planning the German National Research and Education Networks G-WiN and X-WiN and for several benchmark instances.}, language = {en} } @misc{GroetschelKrumkeRambau, author = {Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Wo bleibt der Aufzug?}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4175}, number = {SC-99-29}, abstract = {Dieser Artikel gibt eine allgemeinverst{\"a}ndliche Einf{\"u}hrung in die spezielle Problematik kombinatorischer Online-Problem am Beispiel der Fahrstuhlsteuerung.}, language = {de} } @phdthesis{Helmberg, author = {Helmberg, Christoph}, title = {Semidefinite Programming for Combinatorial Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6022}, number = {00-34}, abstract = {This book offers a self-contained introduction to the field of semidefinite programming, its applications in combinatorial optimization, and its computational methods. We equip the reader with the basic results from linear algebra on positive semidefinite matrices and the cone spanned by them. Starting from linear programming, we introduce semidefinite programs and discuss the associated duality theory. We then turn to semidefinite relaxations of combinatorial optimization and illustrate their interrelation. In the second half we deal with computational methods for solving semidefinite programs. First, the interior point approach, its iteration complexity, and implementational issues are discussed. Next, we explain in great detail the spectral bundle method, which is particularly suited for large scale semidefinite programming. One of the most successful techniques in integer linear programming is the cutting plane approach which improves an initial relaxation by adding violated inequalities. We explore possibilities to combine the two solution methods with the cutting plane approach in order to strengthen semidefinite relaxations of combinatorial optimization problems.}, language = {en} } @misc{Bley, author = {Bley, Andreas}, title = {Routing and Capacity Optimization for IP networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10323}, number = {07-33}, abstract = {This article describes the main concepts and techniques that have been developed during the last year at ZIB to solve dimensioning and routing optimization problems for IP networks. We discuss the problem of deciding if a given path set corresponds to an unsplittable shortest path routing, the fundamental properties of such path sets, and the computational complexity of some basic network planning problems for this routing type. Then we describe an integer-linear programming approach to solve such problems in practice. This approach has been used successfully in the planning of the German national education and research network for several years.}, language = {en} } @phdthesis{Weider, author = {Weider, Steffen}, title = {Integration of Vehicle and Duty Scheduling in Public Transport}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-16240}, abstract = {This thesis describes the algorithm IS-OPT that integrates scheduling of vehicles and duties in public bus transit. IS-OPT is the first algorithm which solves integrated vehicle and duty scheduling problems arising in medium sized carriers such that its solutions can be used in daily operations without further adaptions. This thesis is structured as follows: The first chapter highlights mathematical models of the planning process of public transit companies and examines their potential for integrating them with other planning steps. It also introduces descriptions of the vehicle and the duty scheduling problem. Chapter 2 motivates why it can be useful to integrate vehicle and duty scheduling, explains approaches of the literature, and gives an outline of our algorithm IS-OPT. The following chapters go into the details of the most important techniques and methods of IS-OPT: In Chapter 3 we describe how we use Lagrangean relaxation in a column generation framework. Next, in Chapter 4, we describe a variant of the proximal bundle method (PBM) that is used to approximate linear programs occurring in the solution process. We introduce here a new variant of the PBM which is able to utilize inexact function evaluation and the use of epsilon-subgradients. We also show the convergence of this method under certain assumptions. Chapter 5 treats the generation of duties for the duty scheduling problem. This problem is modeled as a resourceconstraint- shortest-path-problem with non-linear side constraints and nearly linear objective function. It is solved in a two-stage approach. At first we calculate lower bounds on the reduced costs of duties using certain nodes by a new inexact label-setting algorithm. Then we use these bounds to speed up a depth-first-search algorithm that finds feasible duties. In Chapter 6 we present the primal heuristic of IS-OPT that solves the integrated problem to integrality. We introduce a new branch-and-bound based heuristic which we call rapid branching. Rapid branching uses the proximal bundle method to compute lower bounds, it introduces a heuristic node selection scheme, and it utilizes a new branching rule that fixes sets of many variables at once. The common approach to solve the problems occurring in IS-OPT is to trade inexactness of the solutions for speed of the algorithms. This enables, as we show in Chapter 7, to solve large real world integrated problems by IS-OPT. The scheduled produced by IS-OPT save up to 5\% of the vehicle and duty cost of existing schedules of regional and urban public transport companies.}, language = {en} } @phdthesis{Borndoerfer, author = {Bornd{\"o}rfer, Ralf}, title = {Mathematical Optimization and Public Transportation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13613}, school = {Zuse Institute Berlin (ZIB)}, abstract = {This cumulative thesis collects the following six papers for obtaining the habilitation at the Technische Universit{\"a}t Berlin, Fakult{\"a}t II - Mathematik und Naturwissenschaften: (1) Set packing relaxations of some integer programs. (2) Combinatorial packing problems. (3) Decomposing matrices into blocks. (4) A bundle method for integrated multi-depot vehicle and duty scheduling in public transit. (5) Models for railway track allocation. (6) A column-generation approach to line planning in public transport. Some changes were made to the papers compared to the published versions. These pertain to layout unifications, i.e., common numbering, figure, table, and chapter head layout. There were no changes with respect to notation or symbols, but some typos have been eliminated, references updated, and some links and an index was added. The mathematical content is identical. The papers are about the optimization of public transportation systems, i.e., bus networks, railways, and airlines, and its mathematical foundations, i.e., the theory of packing problems. The papers discuss mathematical models, theoretical analyses, algorithmic approaches, and computational aspects of and to problems in this area. Papers 1, 2, and 3 are theoretical. They aim at establishing a theory of packing problems as a general framework that can be used to study traffic optimization problems. Indeed, traffic optimization problems can often be modelled as path packing, partitioning, or covering problems, which lead directly to set packing, partitioning, and covering models. Such models are used in papers 4, 5, and 6 to study a variety of problems concerning the planning of line systems, buses, trains, and crews. The common aim is always to exploit as many degrees of freedom as possible, both at the level of the individual problems by using large-scale integer programming techniques, as well as on a higher level by integrating hitherto separate steps in the planning process.}, language = {en} }