@misc{SchadeBorndoerferBreueretal., author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63390}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @misc{BrettHobergPachecoetal.2015, author = {Brett, Charles and Hoberg, Rebecca and Pacheco, Meritxell and Smith, Kyle and Bornd{\"o}rfer, Ralf and Euler, Ricardo and Gamrath, Gerwin and Grimm, Boris and Heismann, Olga and Reuther, Markus and Schlechte, Thomas and Tesch, Alexander}, title = {G-RIPS 2014 RailLab - Towards robust rolling stock rotations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53475}, year = {2015}, abstract = {The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an opportunity for high-achieving graduate-level students to work in teams on a real-world research project proposed by a sponsor from industry or the public sector. Each G-RIPS team consists of four international students (two from the US and two from European universities), an academic mentor, and an industrial sponsor. This is the report of the Rail-Lab project on the definition and integration of robustness aspects into optimizing rolling stock schedules. In general, there is a trade-off for complex systems between robustness and efficiency. The ambitious goal was to explore this trade-off by implementing numerical simulations and developing analytic models. In rolling stock planning a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects, have to be considered in an integrated model. General hypergraphs provide the modeling power to tackle those requirements. Furthermore, integer programming approaches are able to produce high quality solutions for the deterministic problem. When stochastic time delays are considered, the mathematical programming problem is much more complex and presents additional challenges. Thus, we started with a basic variant of the deterministic case, i.e., we are only considering hypergraphs representing vehicle composition and regularity. We transfered solution approaches for robust optimization from the airline industry to the setting of railways and attained a reasonable measure of robustness. Finally, we present and discuss different methods to optimize this robustness measure.}, language = {en} }