@misc{GroetschelStephan, author = {Gr{\"o}tschel, Martin and Stephan, R{\"u}diger}, title = {Characterization of Facets of the Hop Constrained Chain Polytope via Dynamic Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14914}, abstract = {In this paper, we study the hop constrained chain polytope, that is, the convex hull of the incidence vectors of (s,t)-chains using at most k arcs of a given digraph, and its dominant. We use extended formulations (implied by the inherent structure of the Moore-Bellman-Ford algorithm) to derive facet defining inequalities for these polyhedra via projection. Our findings result into characterizations of all facet defining {0,+1,-1}-inequalities for the hop constrained chain polytope and all facet defining {0,1}-inequalities for its dominant. Although the derived inequalities are already known, such classifications were not previously given to the best of our knowledge. Moreover, we use this approach to generalize so called jump inequalities, which have been introduced in a paper of Dahl and Gouveia in 2004.}, language = {en} } @misc{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation - Simulation and Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13632}, number = {11-32}, abstract = {Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway infrastructure provider. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market. This leads to an increase of slot requests and then it is natural that conflicts occur among them. Furthermore, railway infrastructure networks consist of very expensive assets, even more they are rigid due to the long-term upgrade process. In order to make best use of these valuable infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithmic methodology can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and a general framework to support the integration of simulation and optimization for railway capacity allocation.}, language = {en} } @misc{ShinanoHeinzVigerskeetal., author = {Shinano, Yuji and Heinz, Stefan and Vigerske, Stefan and Winkler, Michael}, title = {FiberSCIP - A shared memory parallelization of SCIP}, issn = {1438-0064}, doi = {10.1287/ijoc.2017.0762}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42595}, abstract = {Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated.}, language = {en} } @misc{HillerKochScheweetal., author = {Hiller, Benjamin and Koch, Thorsten and Schewe, Lars and Schwarz, Robert and Schweiger, Jonas}, title = {A System to Evaluate Gas Network Capacities: Concepts and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61931}, abstract = {Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} } @misc{HillerVredeveld, author = {Hiller, Benjamin and Vredeveld, Tjark}, title = {Probabilistic alternatives for competitive analysis}, issn = {1438-0064}, doi = {10.1007/s00450-011-0149-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15131}, abstract = {In the last 20 years competitive analysis has become the main tool for analyzing the quality of online algorithms. Despite of this, competitive analysis has also been criticized: It sometimes cannot discriminate between algorithms that exhibit significantly different empirical behavior, or it even favors an algorithm that is worse from an empirical point of view. Therefore, there have been several approaches to circumvent these drawbacks. In this survey, we discuss probabilistic alternatives for competitive analysis.}, language = {en} } @misc{Tesch, author = {Tesch, Alexander}, title = {A Polyhedral Study of Event-Based Models for the Resource-Constrained Project Scheduling Problem}, issn = {1438-0064waoa}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68485}, abstract = {We consider event-based Mixed-Integer Programming (MIP) models for the Resource-Constrained Project Scheduling Problem (RCPSP) that represent an alternative to the common time-indexed model (DDT) of Pritsker et al. (1969) for the case where the underlying time horizon is large or job processing times are subject to huge variations. In contrast to the time-indexed model, the size of event-based models does not depend on the time horizon. For two event-based formulations OOE and SEE of Kon{\´e} et al. (2011) we present new valid inequalities that dominate the original formulation. Additionally, we introduce a new event-based model: the Interval Event-Based Model (IEE). We deduce linear transformations between all three models that yield the strict domination order IEE > SEE > OOE for their linear programming (LP) relaxations, meaning that IEE has the strongest linear relaxation among the event-based models. We further show that the popular DDT formulation can be retrieved from IEE by certain polyhedral operations, thus giving a unifying view on a complete branch of MIP formulations for the RCPSP. In addition, we analyze the computational performance of all presented models on test instances of the PSPLIB (Kolisch and Sprecher 1997).}, language = {en} } @misc{Tesch, author = {Tesch, Alexander}, title = {Improving Energetic Propagations for Cumulative Scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69331}, abstract = {We consider the Cumulative Scheduling Problem (CuSP) in which a set of \$n\$ jobs must be scheduled according to release dates, due dates and cumulative resource constraints. In constraint programming, the CuSP is modeled as the cumulative constraint. Among the most common propagation algorithms for the CuSP there is energetic reasoning (Baptiste et al., 1999) with a complexity of O(n^3) and edge-finding (Vilim, 2009) with O(kn log n) where k <= n is the number of different resource demands. We consider the complete versions of the propagators that perform all deductions in one call of the algorithm. In this paper, we introduce the energetic edge-finding rule that is a generalization of both energetic reasoning and edge-finding. Our main result is a complete energetic edge-finding algorithm with a complexity of O(n^2 log n) which improves upon the complexity of energetic reasoning. Moreover, we show that a relaxation of energetic edge-finding with a complexity of O(n^2) subsumes edge-finding while performing stronger propagations from energetic reasoning. A further result shows that energetic edge-finding reaches its fixpoint in strongly polynomial time. Our main insight is that energetic schedules can be interpreted as a single machine scheduling problem from which we deduce a monotonicity property that is exploited in the algorithms. Hence, our algorithms improve upon the strength and the complexity of energetic reasoning and edge-finding whose complexity status seemed widely untouchable for the last decades.}, language = {en} } @misc{FuegenschuhHaynMichaels, author = {F{\"u}genschuh, Armin and Hayn, Christine and Michaels, Dennis}, title = {Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16862}, abstract = {The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt the production process. For the mechanical separation process of fibers from stickies a separator screen is used. This machine has one input feed and two output streams, called the accept and the reject. In the accept the fibers are concentrated, whereas the reject has a higher concentration of stickies. The machine can be controlled by setting its reject rate. But even when the reject rate is set properly, after just a single screening step, the accept still has too many stickies, or the reject too many fibers. To get a proper separation, several separators have to be assembled into a network. From a mathematical point of view this problem can be seen as a multi-commodity network flow design problem with a nonlinear, controllable distribution function at each node. We present a nonlinear mixed-integer programming model for the simultaneous selection of a subset of separators, the network's topology, and the optimal setting of each separator. Numerical results are obtained via different types of linearization of the nonlinearities and the use of mixed-integer linear solvers, and compared with state-of-the-art global optimization software.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {On the semidefinite representations of real functions applied to symmetric matrices}, volume = {439}, issn = {1438-0064}, doi = {10.1016/j.laa.2013.08.021}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17511}, pages = {2829 -- 2843}, abstract = {We present a new semidefinite representation for the trace of a real function f applied to symmetric matrices, when a semidefinite representation of the convex function f is known. Our construction is intuitive, and yields a representation that is more compact than the previously known one. We also show with the help of matrix geometric means and the Riemannian metric of the set of positive definite matrices that for a rational number p in the interval (0,1], the matrix X raised to the exponent p is the largest element of a set represented by linear matrix inequalities. We give numerical results for a problem inspired from the theory of experimental designs, which show that the new semidefinite programming formulation yields a speed-up factor in the order of 10.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {A Class of Semidefinite Programs with rank-one solutions}, issn = {1438-0064}, doi = {10.1016/j.laa.2011.03.027}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14933}, abstract = {We show that a class of semidefinite programs (SDP) admits a solution that is a positive semidefinite matrix of rank at most \$r\$, where \$r\$ is the rank of the matrix involved in the objective function of the SDP. The optimization problems of this class are semidefinite packing problems, which are the SDP analogs to vector packing problems. Of particular interest is the case in which our result guarantees the existence of a solution of rank one: we show that the computation of this solution actually reduces to a Second Order Cone Program (SOCP). We point out an application in statistics, in the optimal design of experiments.}, language = {en} } @misc{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16402}, abstract = {This article gives an overview of the results of the author's PhD thesis. The thesis deals with the mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity - the track allocation problem. This track allocation problem is a major challenge for a railway company, independent of whether a free market, a private monopoly, or a public monopoly is given. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large scale instances. We made considerable progress on solving track allocation problems by two main features - a novel modeling approach for the macroscopic track allocation problem and algorithmic improvements based on the utilization of the bundle method. This allows us to produce for the first time reliable solutions for a real world instance, i.e., the Simplon corridor in Switzerland.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{FujiiItoKimetal., author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {Solving Challenging Large Scale QAPs}, issn = {1438-0064}, doi = {10.12752/8130}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81303}, abstract = {We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors' group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.}, language = {en} } @misc{HillerWalther, author = {Hiller, Benjamin and Walther, Tom}, title = {Modelling compressor stations in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67443}, abstract = {Gas networks are an important application area for optimization. When considering long-range transmission, compressor stations play a crucial role in these applications. The purpose of this report is to collect and systematize the models used for compressor stations in the literature. The emphasis is on recent work on simple yet accurate polyhedral models that may replace more simplified traditional models without increasing model complexity. The report also describes an extension of the compressor station data available in GasLib (http://gaslib.zib.de/) with the parameters of these models.}, language = {en} } @misc{Shinano, author = {Shinano, Yuji}, title = {The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_20}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65545}, abstract = {Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.}, language = {en} } @misc{ShinanoRehfeldtKoch, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71118}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @misc{BreuerBussieckCaoetal., author = {Breuer, Thomas and Bussieck, Michael and Cao, Karl-Kien and Cebulla, Felix and Fiand, Frederik and Gils, Hans Christian and Gleixner, Ambros and Khabi, Dmitry and Koch, Thorsten and Rehfeldt, Daniel and Wetzel, Manuel}, title = {Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_85}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66183}, abstract = {Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Improved optimization models for potential-driven network flow problems via ASTS orientations}, issn = {1438-0064}, doi = {10.12752/7534}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75347}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of bipolar orientations, as a combinatorial relaxation of feasible solutions of potential-driven flow problems, study their structure, and show how they can be used to strengthen existing relaxations and thus provide improved optimization models. Our computational results indicate that ASTS orientations can be used to derive much stronger bounds on the flow variables than existing bound tightening methods and to yield significant performance improvements for an existing state-of-the-art MILP model for large-scale gas networks.}, language = {en} } @misc{Bushe, type = {Master Thesis}, author = {Bushe, Julian}, title = {Rolling Stock Rotation Optimization with Maintenance Paths}, abstract = {Die Planung vom Zuguml{\"a}ufen ist eine der wichtigsten Aufgaben f{\"u}r Eisenbahnun- ternehmen. Dabei spielt auch die Einhaltung von vorgegebenen Wartungsintervallen eine zentrale Rolle f{\"u}r die Sicherheit und Zuverl{\"a}ssigkeit der Schienenfahrzeuge. Wir zeigen, wie man dieses Umlaufplanungsproblem unter Beachtung von Wartungsbe- dingungen mathematisch formuliert, modelliert und l{\"o}st — sowohl in der Theorie als auch im Anwendungsfall mit Szenarien der DB Fernverkehr AG, einer Konzern- tochter der Deutschen Bahn f{\"u}r den Schienenpersonenfernverkehr. Markus Reuther hat sich in seiner Dissertation [11] mit diesem Problem besch{\"a}ftigt und es mit Hilfe eines passenden Hypergraphen als gemischt-ganzzahliges Programm modelliert. Neben der Modellierung pr{\"a}sentiert Reuther in seiner Arbeit neuartige algorithmische Ideen, darunter den sogenannten Coarse-to-Fine -Ansatz, bei dem zun{\"a}chst Teile des Problems auf einer weniger detaillierten ( coarse ) Ebene gel{\"o}st werden und diese L{\"o}sung dann verwendet wird, um auf effiziente Art und Weise eine L{\"o}sung f{\"u}r das urspr{\"u}ngliche Problem zu finden. Zur Wartungsplanung nutzt Reuther einen Fluss im Hypergraphen, der den Ressourcenverbrauch der Fahrzeuge modelliert. In der linearen Relaxierung des Modells f{\"u}hrt dies dazu, dass die Zahl der notwendigen Wartungen systematisch untersch{\"a}tzt wird. Dadurch bleibt in vielen F{\"a}llen eine große L{\"u}cke zwischen dem Zielfunktionswert einer optimalen L{\"o}sung des ganzzahligen Problems und der untere Schranke, die uns die lineare Relaxierung liefert. Wir nehmen uns in dieser Arbeit dieses Problems an. Wir entwickeln ein auf Pfaden basierendes ganzzahliges Modell f{\"u}r das Umlaufplanungsproblem und zeigen, dass die untere Schranke mindestens so scharf oder sch{\"a}rfer ist als die untere Schranke, die das Modell von Reuther liefert. Um das Modell zu l{\"o}sen, entwickeln wir einen Algorithmus, der Spaltengenerierung mit dem Coarse-to-Fine-Ansatz von Reuther verbindet. Weiterhin entwickeln wir eine Spaltenauswahlregel zur Beschleunigung des Algorithmus. Das Modell und alle in der Arbeit vorgestellten Algorithmen wur- den im Rahmen der Arbeit implementiert und mit Anwendungsszenarien der DB Fernverkehr AG getestet. Unsere Tests zeigen, dass unser Modell f{\"u}r fast alle Szena- rien deutlich sch{\"a}rfere untere Schranken liefert als das Modell von Reuther. In den getesteten Instanzen konnten wir durch die Verbesserung der unteren Schranke bis zu 99\% der Optimalit{\"a}tsl{\"u}cke schließen. In einem Drittel der F{\"a}lle konnten wir durch unseren Ansatz auch f{\"u}r das ganzzahlige Programm verbesserte Zielfunktionswerte erreichen}, language = {en} } @misc{Henning, type = {Master Thesis}, author = {Henning, Erin}, title = {Tropical Geometry Approach to Shortest Paths with Parameterized Arc Weights - A Case Study in Public Transportation Networks}, abstract = {In graphical representations of public transportation networks, there is often some degree of uncertainty in the arc values, due to delays or transfer times. This uncertainty can be expressed as a parameterized weight on the transfer arcs. Classical shortest path algorithms often have difficulty handling parameterized arc weights and a tropical geometry approach has been shown as a possible solution. The connection between the classical shortest path problem and tropical geometry is well establish: Tropically multiplying the n × n adjacency matrix of a graph with itself n - 1 times results in the so-called Kleene star, and is a matrix-form solution to the all-pairs shortest path problem. Michael Joswig and Benjamin Schr{\"o}ter showed in their paper The Tropical Geometry of Shortest Paths that the same method can be used to find the solution to the all-pairs shortest path problem even in the case of variable arc weights and they proposed an algorithm to solve the single-target shortest path problem in such a case. The solution takes the form of a polyhedral subdivision of the parameter space. As the number of variable arc weights grows, the time needed to execute an implementation of this algorithm grows exponentially. As the size of a public transportation network grows, the number of variable arc weights grows exponentially as well. However, it has been observed that in public transportation networks, there are usually only a few possible shortest routes. Geometrically, this means that there should be few polyhedra in the polyhedral subdivision. This algorithm is used on an example of a real-world public transportation network and an analysis of the polyhedral subdivision is made. Then a geometrical approach is used to analyze the impact of limiting the number of transfers, and thereby limiting the number of parameterized arcs used, as an estimation of the solution to the all-pairs shortest path problem}, language = {en} } @misc{Masing, type = {Master Thesis}, author = {Masing, Berenike}, title = {Optimal Line Planning in the Parametric City}, abstract = {One of the fundamental steps in the optimization of public transport is line planning. It involves determining lines and assigning frequencies of service such that costs are minimized while also maximizing passenger comfort and satisfying travel demands. We formulate the problem as a mixed integer linear program that considers all circuit-like lines in a graph and allows free passenger routing. Traveler and operator costs are included in a linear scalarization in the objective. We apply said programming problem to the Parametric City, which is a graph model introduced by Fielbaum, Jara-D{\´i}az and Gschwender that exibly represents different cities. In his dissertation, Fielbaum solved the line planning problem for various parameter choices in the Parametric City. In a first step, we therefore review his results and make comparative computations. Unlike Fielbaum we arrive at the conclusion that the optimal line plan for this model indeed depends on the demand. Consequently, we analyze the line planning problem in-depth: We find equivalent, but easier to compute formulations and provide a lower bound by LP-relaxation, which we show to be equivalent to a multi-commodity flow problem. Further, we examine what impact symmetry has on the solutions. Supported both by computational results as well as by theoretical analysis, we reach the conclusion that symmetric line plans are optimal or near-optimal in the Parametric City. Restricting the model to symmetric line plans allows for a \kappa-factor approximation algorithm for the line planning problem in the Parametric City.}, language = {en} } @masterthesis{Lange, type = {Bachelor Thesis}, author = {Lange, Johanna}, title = {A Decomposition and Dualization Approach to the Periodic Event Scheduling Problem}, abstract = {Scheduling ist ein wichtiger Forschungsgegenstand im Bereich der diskreten Optimierung. Es geht darum, einen Schedule, d.h. einen Ablaufplan, f{\"u}r gegebene Ereignisse zu finden. Dieser soll optimal hinsichtlich einer Zielfunktion wie zum Beispiel minimaler Dauer oder Kosten sein. Dabei gibt es in der Regel Nebenbedingungen wie Vorrangbeziehungen zwischen den Ereignissen oder zeitliche Einschr{\"a}nkungen, die zu erf{\"u}llen sind. Falls die Ereignisse periodisch wiederkehren, spricht man von periodischem Scheduling. Beispiele sind das Erstellen von Zugfahrpl{\"a}nen, die Schaltungvon Ampelsignalen oder die Planung von Produktionsabl{\"a}ufen. Mathematisch k{\"o}nnen diese Probleme mit dem Periodic Event Scheduling Problem (PESP) modelliert werden, das als gemischt-ganzzahliges Programm formuliert werden kann. In dieser Bachelorarbeit wird ein Ansatz zur L{\"o}sung des PESP mittels Zerlegung und Dualisierung entwickelt. In den Kapiteln 2 und 3 werden zun{\"a}chst die notwendigen graphentheoretischen Grundlagen und das PESP eingef{\"u}hrt. In Kapitel 4 wird das PESP durch Fixierung der ganzzahligen Variablen in lineare Programme zerlegt. Dieses Unterproblem wird dualisiert und wieder in das PESP eingesetzt. Daf{\"u}r ist eine weitere Nebenbedingung n{\"o}tig. Im f{\"u}nften Kapitel behandeln wir die L{\"o}sung des teildualisierten PESP. Eine M{\"o}glichkeit ist es, sich auf eine Teilmenge der Nebenbedingungen zu beschr{\"a}nken. Eine weitere M{\"o}glichkeit ist ein Algorithmus, der{\"a}hnlich wie BendersZerlegung die Nebenbedingungen dynamisch erzeugt. Dieser Algorithmus wird in Kapitel 6 implementiert und an vier Beispielen getestet.}, language = {en} } @misc{Kuehner, type = {Master Thesis}, author = {K{\"u}hner, Arno}, title = {Shortest Paths with Boolean Constraints}, abstract = {For this thesis we study the Constrained Horizontal Flightplanning Problem (CHFPP) for which one has to find the path of minimum cost between airports s and t in a directed graph that respects a set of boolean constraints. To this end we give a survey of three different multilabel algorithms that all use a domination subroutine. We summarize an approach by Knudsen, Chiarandini and Larsen to define this domination and afterwards present our own method which builds on that approach. We suggest different implementation techniques to speed up the computation time, most notably a Reoptimization for an iterative method to solve the problem. Furthermore we implemented the different versions of the algorithm and present statistics on their computation as well as an overview of statistics on the set of real-world constraints that we were given. Finally we present two alternative approaches that tackle the problem, a heuristic with similarities to a Lagrangian relaxation and an approach that makes use of an algorithm which finds the k shortest path of a graph such as the ones of Epstein or Yen.}, language = {en} } @misc{Bortoletto, type = {Master Thesis}, author = {Bortoletto, Enrico}, title = {The tropical tiling of periodic timetable space and a dual modulo network simplex algorithm}, abstract = {We propose a tropical interpretation of the solution space of the Periodic Event Scheduling Problem as a collection of polytropes, making use of the characterization of tropical cones as weighted digraph polyhedra. General and geometric properties of the polytropal collection are inspected and understood in connection with the combinatorial properties of the underlying periodic event scheduling instance. Novel algorithmic ideas are presented and tested, making use of the aforementioned theoretical results to solve and optimize the problem.}, language = {en} } @masterthesis{Kraus, type = {Bachelor Thesis}, author = {Kraus, Luitgard}, title = {A Label Setting Multiobjective Shortest Path FPTAS}, abstract = {Algorithms that solve the shortest path problem can largely be split into the two categories of label setting and label correcting. The Multiobjective Shortest Path (MOSP) problem is a generalization of the classical shortest path problem in terms of the dimension of the cost function. We explore the differences of two similar MOSP label setting algorithms. Furthermore, we present and prove a general method of how to derive Fully Polynomial Time Approximation Schemes (FPTAS) for MOSP label setting algorithms. Finally, we explore two pruning techniques for the one to one variants of exact label setting MOSP algorithms and adapt them to their FPTAS variants.}, language = {en} } @misc{Rahmati, type = {Master Thesis}, author = {Rahmati, Niloofar}, title = {Resource Constrained APSP-Algorithm with Possible Reloading Stops}, language = {en} } @misc{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Rooted Maximum Weight Connected Subgraphs with Balancing and Capacity Constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84427}, language = {en} } @misc{Buwaya, type = {Master Thesis}, author = {Buwaya, Julia}, title = {Optimizing control in a transportation network when users may choose their OD-path}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42330}, school = {Zuse Institute Berlin (ZIB)}, pages = {81}, abstract = {This thesis represents a game-theoretic investigation of the allocation of inspectors in a transportation network, comparing Nash and Stackelberg equilibrium strategies to a strategy in which inspections are conducted proportionally to the traffic volume. It contains specifications for the integration of space and time dependencies and extensive experimental tests for the application on the transportation network of German motorways using real data. Main results are that - although the formulated spot-checking game is not zero-sum - we are able to compute a Nash equilibrium using linear programming and secondly, that experimental results yield that a Nash equilibrium strategy represents a good trade-off for the Stackelberg equilibrium strategy between efficiency of controls and computation time.}, language = {en} } @misc{HarrodSchlechte, author = {Harrod, Steven and Schlechte, Thomas}, title = {A Direct Comparison of Physical Block Occupancy Versus Timed Block Occupancy in Train Timetabling Formulations}, issn = {1438-0064}, doi = {10.1016/j.tre.2013.04.003}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17946}, abstract = {Two fundamental mathematical formulations for railway timetabling are compared on a common set of sample problems, representing both multiple track high density services in Europe and single track bidirectional operations in North America. One formulation, ACP, enforces against conflicts by constraining time intervals between trains, while the other formulation, HGF, monitors physical occupation of controlled track segments. The results demonstrate that both ACP and HGF return comparable solutions in the aggregate, with some significant differences in select instances, and a pattern of significant differences in performance and constraint enforcement overall.}, language = {en} } @misc{FuegenschuhGroesserVierhaus, author = {F{\"u}genschuh, Armin and Gr{\"o}sser, Stefan N. and Vierhaus, Ingmar}, title = {A Global Approach to the Control of an Industry Structure System Dynamics Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42932}, abstract = {We consider a system dynamics model that describes the effect of human activity on natural resources. The central stocks are the accumulated profit, the industry structures, and the water resources. The model can be controlled through two time-dependent parameters. The goal in this paper is to find a parameter setting that leads to a maximization of a performance index, which reflects both environmental and economic aspects. Thus, the goal is to identify the most sustainable stock of industry structures within the model's constraints and assumptions. In order to find a proven global optimal parameter set, we formulate the System Dynamics Optimization model as a mixed-integer nonlinear problem that is accessible for numerical solvers. Due to the dynamic structure of the model, certain steps of the solution process must be handled with greater care, compared to standard non-dynamic problems. We describe our approach of solving the industry structure model and present computational results. In addition, we discuss the limitations of the approach and next steps.}, language = {en} } @misc{RaackRaymondWerneretal., author = {Raack, Christian and Raymond, Annie and Werner, Axel and Schlechte, Thomas}, title = {Integer Programming and Sports Rankings}, issn = {1438-0064}, doi = {10.1515/jqas-2013-0111}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18068}, abstract = {Sports rankings are obtained by applying a system of rules to evaluate the performance of the participants in a competition. We consider rankings that result from assigning an ordinal rank to each competitor according to their performance. We develop an integer programming model for rankings that allows us to calculate the number of points needed to guarantee a team the ith position, as well as the minimum number of points that could yield the ith place. The model is very general and can thus be applied to many types of sports. We discuss examples coming from football (soccer), ice hockey, and Formula~1. We answer various questions and debunk a few myths along the way. Are 40 points enough to avoid relegation in the Bundesliga? Do 95 points guarantee the participation of a team in the NHL playoffs? Moreover, in the season restructuration currently under consideration in the NHL, will it be easier or harder to access the playoffs? Is it possible to win the Formula~1 World Championship without winning at least one race or without even climbing once on the podium? Finally, we observe that the optimal solutions of the aforementioned model are associated to extreme situations which are unlikely to happen. Thus, to get closer to realistic scenarios, we enhance the model by adding some constraints inferred from the results of the previous years.}, language = {en} } @misc{HosodaMaherShinanoetal., author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89700}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @misc{GleixnerBertholdMuelleretal., author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {Picos Documentation. Release 0.1.1.}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17396}, abstract = {PICOS is a user friendly interface to several conic and integer programming solvers, very much like YALMIP under MATLAB. The main motivation for PICOS is to have the possibility to enter an optimization problem as a high level model, and to be able to solve it with several different solvers. Multidimensional and matrix variables are handled in a natural fashion, which makes it painless to formulate a SDP or a SOCP. This is very useful for educational purposes, and to quickly implement some models and test their validity on simple examples. Furthermore, with PICOS you can take advantage of the python programming language to read and write data, construct a list of constraints by using python list comprehensions, take slices of multidimensional variables, etc.}, language = {en} } @misc{MunguiaOxberryRajanetal., author = {Munguia, Lluis-Miquel and Oxberry, Geoffrey and Rajan, Deepak and Shinano, Yuji}, title = {Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs}, number = {ZIB-Report 17-58}, issn = {1438-0064}, doi = {10.1007/s10589-019-00074-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65517}, abstract = {PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch \& Bound (B\&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B\&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B\&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.}, language = {en} } @misc{FujiiKimKojimaetal., author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint}, issn = {1438-0064}, doi = {10.12752/8808}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88086}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92.The converted BQOP is much simpler than the original QAP tai256c and it also inherits some of the symmetry properties. However, it is still very difficult to solve. We present an efficient branch and bound method for improving the lower bound effectively. A new lower bound with 1.36\% gap is also provided.}, language = {en} } @misc{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, doi = {10.1007/s12532-016-0114-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60170}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{RehfeldtKochMaher, author = {Rehfeldt, Daniel and Koch, Thorsten and Maher, Stephen J.}, title = {Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem}, issn = {1438-0064}, doi = {10.1002/net.21857}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60420}, abstract = {The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.}, language = {en} } @misc{GottwaldMaherShinano, author = {Gottwald, Robert Lion and Maher, Stephen J. and Shinano, Yuji}, title = {Distributed domain propagation}, issn = {1438-0064}, doi = {10.4230/LIPIcs.SEA.2017.6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61380}, abstract = {Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it's simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after a variables domain has been reduced. This paper investigates the impact of distributed domain propagation in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers.}, language = {en} } @misc{MaherMiltenbergerPedrosoetal., author = {Maher, Stephen J. and Miltenberger, Matthias and Pedroso, Jo{\~a}o Pedro and Rehfeldt, Daniel and Schwarz, Robert and Serrano, Felipe}, title = {PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite}, issn = {1438-0064}, doi = {10.1007/978-3-319-42432-3_37}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61348}, abstract = {SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.}, language = {en} } @misc{LindnerReisch, author = {Lindner, Niels and Reisch, Julian}, title = {Parameterized Complexity of Periodic Timetabling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78314}, abstract = {Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib.}, language = {en} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {Timetable Merging for the Periodic Event Scheduling Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81587}, abstract = {We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @misc{Witzig, author = {Witzig, Jakob}, title = {Conflict Driven Diving for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66116}, abstract = {The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l.}, language = {en} } @misc{WitzigBeckenbachEifleretal., author = {Witzig, Jakob and Beckenbach, Isabel and Eifler, Leon and Fackeldey, Konstantin and Gleixner, Ambros and Grever, Andreas and Weber, Marcus}, title = {Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes}, issn = {1438-0064}, doi = {10.1137/16M1091162}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60353}, abstract = {In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.}, language = {en} } @misc{WitzigGamrathHiller, author = {Witzig, Jakob and Gamrath, Gerald and Hiller, Benjamin}, title = {Reoptimization Techniques in MIP Solvers}, issn = {1438-0064}, doi = {10.1007/978-3-319-20086-6_14}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54375}, abstract = {Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to ``warmstart'' using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach.}, language = {en} } @article{WitzigBeckenbachEifleretal., author = {Witzig, Jakob and Beckenbach, Isabel and Eifler, Leon and Fackeldey, Konstantin and Gleixner, Ambros and Grever, Andreas and Weber, Marcus}, title = {Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes}, series = {Multiscale Modeling and Simulation}, volume = {16}, journal = {Multiscale Modeling and Simulation}, number = {1}, issn = {1438-0064}, doi = {10.1137/16M1091162}, pages = {248 -- 265}, abstract = {In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.}, language = {en} } @misc{HillerKlugWitzig, author = {Hiller, Benjamin and Klug, Torsten and Witzig, Jakob}, title = {Reoptimization in branch-and-bound algorithms with an application to elevator control}, issn = {1438-0064}, doi = {10.1007/978-3-642-38527-8_33}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17876}, abstract = {We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm. We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.}, language = {en} }