@misc{BorndoerferHoppmannKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika and Lindner, Niels}, title = {Separation of Cycle Inequalities in Periodic Timetabling}, issn = {1438-0064}, doi = {https://doi.org/10.1016/j.disopt.2019.100552}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69746}, abstract = {Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algo- rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.}, language = {en} } @misc{Prause, author = {Prause, Felix}, title = {A Multi-Swap Heuristic for Rolling Stock Rotation Planning with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93133}, abstract = {We present a heuristic solution approach for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). The task of this problem is to assign a sequence of trips to each of the vehicles and to schedule their maintenance such that all trips can be operated. Here, the health states of the vehicles are considered to be random variables distributed by a family of probability distribution functions, and the maintenance services should be scheduled based on the failure probability of the vehicles. The proposed algorithm first generates a solution by solving an integer linear program and then heuristically improves this solution by applying a local search procedure. For this purpose, the trips assigned to the vehicles are split up and recombined, whereby additional deadhead trips can be inserted between the partial assignments. Subse- quently, the maintenance is scheduled by solving a shortest path problem in a state-expanded version of a space-time graph restricted to the trips of the individual vehicles. The solution approach is tested and evaluated on a set of test instances based on real-world timetables.}, language = {en} } @misc{PrauseBorndoerfer, author = {Prause, Felix and Bornd{\"o}rfer, Ralf}, title = {Construction of a Test Library for the Rolling Stock Rotation Problem with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91734}, abstract = {We describe the development of a test library for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). Our approach involves the utilization of genuine timetables from a private German railroad company. The generated instances incorporate probability distribution functions for modeling the health states of the vehicles and the considered trips possess varying degradation functions. RSRP-PdM involves assigning trips to a fleet of vehicles and scheduling their maintenance based on their individual health states. The goal is to minimize the total costs consisting of operational costs and the expected costs associated with vehicle failures. The failure probability is dependent on the health states of the vehicles, which are assumed to be random variables distributed by a family of probability distributions. Each distribution is represented by the parameters characterizing it and during the operation of the trips, these parameters get altered. Our approach incorporates non-linear degradation functions to describe the inference of the parameters but also linear ones could be applied. The resulting instances consist of the timetables of the individual lines that use the same vehicle type. Overall, we employ these assumptions and utilize open-source data to create a library of instances with varying difficulty. Our approach is vital for evaluating and comparing algorithms designed to solve the RSRP-PdM.}, language = {en} } @misc{PrauseBorndoerferGrimmetal., author = {Prause, Felix and Bornd{\"o}rfer, Ralf and Grimm, Boris and Tesch, Alexander}, title = {Approximating the RSRP with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89531}, abstract = {We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for two instances derived from real world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.}, language = {en} } @misc{PetkovicZakiyeva, author = {Petkovic, Milena and Zakiyeva, Nazgul}, title = {Mathematical Optimization for Analyzing and Forecasting Nonlinear Network Time Series}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88037}, abstract = {This work presents an innovative short to mid-term forecasting model that analyzes nonlinear complex spatial and temporal dynamics in energy networks under demand and supply balance constraints using Network Nonlinear Time Series (TS) and Mathematical Programming (MP) approach. We address three challenges simultaneously, namely, the adjacency matrix is unknown; the total amount in the network has to be balanced; dependence is unnecessarily linear. We use a nonparametric approach to handle the nonlinearity and estimate the adjacency matrix under the sparsity assumption. The estimation is conducted with the Mathematical Optimisation method. We illustrate the accuracy and effectiveness of the model on the example of the natural gas transmission network of one of the largest transmission system operators (TSOs) in Germany, Open Grid Europe. The obtained results show that, especially for shorter forecasting horizons, the proposed method outperforms all considered benchmark models, improving the average nMAPE for 5.1\% and average RMSE for 79.6\% compared to the second-best model. The model is capable of capturing the nonlinear dependencies in the complex spatial-temporal network dynamics and benefits from both sparsity assumption and the demand and supply balance constraint.}, language = {en} } @misc{FujiiKimKojimaetal., author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93072}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with 1.0\% gap is shown to be still quite difficult.}, language = {en} }