@misc{LeitnerLjubicSinnletal., author = {Leitner, Markus and Ljubic, Ivana and Sinnl, Markus and Werner, Axel}, title = {Two algorithms for solving 3-objective k-ArchConFL and IPs in general}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56259}, abstract = {We present two algorithms to solve a 3-objective optimization problem arising in telecommunications access network planning, the k-Architecture Connected Facility Location Problem. The methods can also be used to solve any 3-objective integer linear programming model and can be extended to the multiobjective case. We give some exemplary computations using small and medium-sized instances for our problem.}, language = {en} } @misc{DraegertEisenblaetterGamrathetal., author = {Draegert, Andreas and Eisenbl{\"a}tter, Andreas and Gamrath, Inken and Werner, Axel}, title = {Optimal Battery Controlling for Smart Grid Nodes}, issn = {1438-0064}, doi = {10.1007/978-4-431-55420-2_6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53550}, abstract = {Energy storages can be of great value when added to power grids. They introduce the possibility to store and release energy whenever this is favorable. This is particularly relevant, for example, if power supply is volatile (as is the case with renewable energy) and the network is small (so that there are few other nodes that might balance fluctuations in consumption or production). We present models and methods from mathematical optimization for computing an optimized storage schedule for this purpose. We look at alternative optimization objectives, such as smallest possible peak load, low energy costs, or the close approximation of a prescribed load curve. The optimization needs to respect general operational and economic constraints as well as limitations in the use of storage, which are imposed by the chosen storage technology. We therefore introduce alternative approaches for modeling the non-linear properties of energy storages and study their impact on the efficiency of the optimization process. Finally, we present a computational study with batteries as storage devices. We use this to highlight the trade-off between solution quality and computational tractability. A version of the model for the purpose of leveling peaks and instabilities has been implemented into a control system for an office-building smart grid scenario.}, language = {en} } @misc{PfeufferWerner, author = {Pfeuffer, Frank and Werner, Axel}, title = {Adaptive telecommunication network operation with a limited number of reconfigurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55547}, abstract = {Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators' concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch \& Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin.}, language = {en} } @misc{UsluWerner, author = {Uslu, Svenja and Werner, Axel}, title = {A Two-Phase Method for the Biobjective k-Architecture Connected Facility Location Problem and Hypervolume Computation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53753}, abstract = {We apply customized versions of the ε-constraint Method and the Two-Phase Method to a problem originating in access network planning. We introduce various notions of quality measures for approximated/partial sets of nondominated points, utilizing the concept of hypervolume for biobjective problems. We report on computations to assess the performance of the two methods in terms of these measures.}, language = {en} }