@misc{MiltenbergerRalphsSteffy, author = {Miltenberger, Matthias and Ralphs, Ted and Steffy, Daniel}, title = {Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization}, series = {Operations Research Proceedings 2017}, journal = {Operations Research Proceedings 2017}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64645}, abstract = {We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether such predictions can be used to make better algorithmic choices. In a first step towards this goal, we discuss here the numerical behavior of an existing solver in order to determine whether our intuitive understanding of this behavior is correct.}, language = {en} } @misc{D'AndreagiovanniRaymond, author = {D'Andreagiovanni, Fabio and Raymond, Annie}, title = {Multiband Robust Optimization and its Adoption in Harvest Scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43380}, abstract = {A central assumption in classical optimization is that all the input data of a problem are exact. However, in many real-world problems, the input data are subject to uncertainty. In such situations, neglecting uncertainty may lead to nominally optimal solutions that are actually suboptimal or even infeasible. Robust optimization offers a remedy for optimization under uncertainty by considering only the subset of solutions protected against the data deviations. In this paper, we provide an overview of the main theoretical results of multiband robustness, a new robust optimization model that extends and refines the classical theory introduced by Bertsimas and Sim. After introducing some new results for the special case of pure binary programs, we focus on the harvest scheduling problem and show how multiband robustness can be adopted to tackle the uncertainty affecting the volume of produced timber and grant a reduction in the price of robustness.}, language = {en} } @misc{Gamrath, type = {Master Thesis}, author = {Gamrath, Gerald}, title = {Generic Branch-Cut-and-Price}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57543}, pages = {208}, abstract = {In this thesis, we present the theoretical background, implementational details and computational results concerning the generic branch-cut-and-price solver GCG.}, language = {en} } @misc{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60493}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @misc{CheungGleixnerSteffy, author = {Cheung, Kevin K. H. and Gleixner, Ambros and Steffy, Daniel}, title = {Verifying Integer Programming Results}, issn = {1438-0064}, doi = {10.1007/978-3-319-59250-3_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61044}, abstract = {Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates.}, language = {en} } @misc{BorndoerferArslanElijazyferetal., author = {Bornd{\"o}rfer, Ralf and Arslan, Oytun and Elijazyfer, Ziena and G{\"u}ler, Hakan and Renken, Malte and Sahin, G{\"u}venc and Schlechte, Thomas}, title = {Line Planning on Path Networks with Application to the Istanbul Metrob{\"u}s}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60119}, abstract = {Bus rapid transit systems in developing and newly industrialized countries often consist of a trunk with a path topology. On this trunk, several overlapping lines are operated which provide direct connections. The demand varies heavily over the day, with morning and afternoon peaks typically in reverse directions. We propose an integer programming model for this problem, derive a structural property of line plans in the static (or single period) ``unimodal demand'' case, and consider approaches to the solution of the multi-period version that rely on clustering the demand into peak and off-peak service periods. An application to the Metrob{\"u}s system of Istanbul is discussed.}, language = {en} } @misc{BlancoBorndoerferHoangetal., author = {Blanco, Marco and Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Schlechte, Thomas and Schlobach, Swen}, title = {The Shortest Path Problem with Crossing Costs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61240}, abstract = {We introduce the shortest path problem with crossing costs (SPPCC), a shortest path problem in a directed graph, in which the objective function is the sum of arc weights and crossing costs. The former are independently paid for each arc used by the path, the latter need to be paid every time the path intersects certain sets of arcs, which we call regions. The SPPCC generalizes not only the classical shortest path problem but also variants such as the resource constrained shortest path problem and the minimum label path problem. We use the SPPCC to model the flight trajectory optimization problem with overflight costs. In this paper, we provide a comprehensive analysis of the problem. In particular, we identify efficient exact and approximation algorithms for the cases that are most relevant in practice.}, language = {en} } @misc{SchwartzBorndoerferBartz, author = {Schwartz, Stephan and Bornd{\"o}rfer, Ralf and Bartz, Gerald}, title = {The Graph Segmentation Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60750}, abstract = {We investigate a graph theoretical problem arising in the automatic billing of a network toll. Given a network and a family of user paths, we study the graph segmentation problem (GSP) to cover parts of the user paths by a set of disjoint segments. The GSP is shown to be NP-hard but for special cases it can be solved in polynomial time. We also show that the marginal utility of a segment is bounded. Computational results for real-world instances show that in practice the problem is more amenable than the theoretic bounds suggest.}, language = {en} } @misc{BauschertBuesingD'Andreagiovannietal., author = {Bauschert, Thomas and B{\"u}sing, Christina and D'Andreagiovanni, Fabio and Koster, Arie M.C.A. and Kutschka, Manuel and Steglich, Uwe}, title = {Network Planning under Demand Uncertainty with Robust Optimization}, issn = {1438-0064}, doi = {10.1109/MCOM.2014.6736760}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42557}, abstract = {The planning of a communication network is inevitably depending on the quality of both the planning tool and the demand forecast used. In this article, we show exemplarily how the emerging area of Robust Optimization can advance the network planning by a more accurate mathematical description of the demand uncertainty. After a general introduction of the concept and its application to a basic network design problem, we present two applications: multi-layer and mixed-line-rate network design. We conclude with a discussion of extensions of the robustness concept to increase the accuracy of handling uncertainties.}, language = {en} } @misc{BorndoerferMehrgardtReutheretal., author = {Bornd{\"o}rfer, Ralf and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas and Waas, Kerstin}, title = {Re-optimization of Rolling Stock Rotations}, issn = {1438-0064}, doi = {10.1007/978-3-319-07001-8_8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42569}, abstract = {The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, i.e., vehicle composition, maintenance constraints, and regularity aspects. In industrial applications existing schedules often have to be re-optimized to integrate timetable changes or construction sites. We present an integrated modeling and algorithmic approach for this task as well as computational results for industrial problem instances of DB Fernverkehr AG.}, language = {en} } @misc{GrimmBorndoerferReutheretal., author = {Grimm, Boris and Bornd{\"o}rfer, Ralf and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {A Propagation Approach to Acyclic Rolling Stock Rotation Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63930}, abstract = {The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.}, language = {en} } @misc{GilgKlugMartienssenetal., author = {Gilg, Brady and Klug, Torsten and Martienssen, Rosemarie and Paat, Joseph and Schlechte, Thomas and Schulz, Christof and Seymen, Sinan and Tesch, Alexander}, title = {Conflict-Free Railway Track Assignment at Depots}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63843}, abstract = {Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.}, language = {en} } @misc{SchadeBorndoerferBreueretal., author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63390}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @misc{VierhausFuegenschuhGottwaldetal., author = {Vierhaus, Ingmar and F{\"u}genschuh, Armin and Gottwald, Robert Lion and Gr{\"o}sser, Stefan N.}, title = {Modern Nonlinear Optimization Techniques for an Optimal Control of System Dynamics Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-48159}, abstract = {We study System Dynamics models with several free parameters that can be altered by the user. We assume that the user's goal is to achieve a certain dynamic behavior of the model by varying these parameters. In order to the find best possible combination of parameter settings, several automatic parameter tuning methods are described in the literature and readily available within existing System Dynamic software packages. We give a survey on the available techniques in the market and describe their theoretical background. Some of these methods are already six decades old, and meanwhile newer and more powerful optimization methods have emerged in the mathematical literature. One major obstacle for their direct use are tabled data in System Dynamics models, which are usually interpreted as piecewise linear functions. However, modern optimization methods usually require smooth functions which are twice continuously differentiable. We overcome this problem by a smooth spline interpolation of the tabled data. We use a test set of three complex System Dynamic models from the literature, describe their individual transition into optimization problems, and demonstrate the applicability of modern optimization algorithms to these System Dynamics Optimization problems.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {SCIP-Jack—a solver for STP and variants with parallelization extensions: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66416}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state.}, language = {en} } @misc{Eifler, type = {Master Thesis}, author = {Eifler, Leon}, title = {Mixed-Integer Programming for Clustering in Non-reversible Markov Processes}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66486}, pages = {74}, abstract = {The topic of this thesis is the examination of an optimization model which stems from the clustering process of non-reversible markov processes. We introduce the cycle clustering problem und formulate it as a mixed integer program (MIP). We prove that this problem is N P-hard and discuss polytopal aspects such as facets and dimension. The focus of this thesis is the development of solving methods for this clustering problem. We develop problem specific primal heuristics, as well as separation methods and an approximation algorithm. These techniques are implemented in practice as an application for the MIP solver SCIP. Our computational experiments show that these solving methods result in an average speedup of ×4 compared to generic solvers and that our application is able to solve more instances to optimality within the given time limit of one hour.}, language = {en} } @misc{BorndoerferGrimmReutheretal., author = {Bornd{\"o}rfer, Ralf and Grimm, Boris and Reuther, Markus and Schlechte, Thomas}, title = {Optimization of Handouts for Rolling Stock Rotations Visualization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61430}, abstract = {A railway operator creates (rolling stock) rotations in order to have a precise master plan for the operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply traverses a set of operational days while covering trips of the timetable. As it is well known, the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging and still a topical research subject. Nevertheless, we study a completely different but strongly related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In our industrial application at DB Fernverkehr AG, the handout is exactly as important as the rotation itself. Moreover, it turns out that also other European railway operators use exactly the same methodology (but not terminology). Since a rotation can have many handouts of different quality, we show how to compute optimal ones through an integer program (IP) by standard software. In addition, a construction as well as an improvement heuristic are presented. Our computational results show that the heuristics are a very reliable standalone approach to quickly find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a computational comparison to the IP approach.}, language = {en} } @misc{HennigSchwarz, author = {Hennig, Kai and Schwarz, Robert}, title = {Using Bilevel Optimization to find Severe Transport Situations in Gas Transmission Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61519}, abstract = {In the context of gas transmission in decoupled entry-exit systems, many approaches to determine the network capacity are based on the evaluation of realistic and severe transport situations. In this paper, we review the Reference Point Method, which is an algorithm used in practice to generate a set of scenarios using the so-called transport moment as a measure for severity. We introduce a new algorithm for finding severe transport situations that considers an actual routing of the flow through the network and is designed to handle issues arising from cyclic structures in a more dynamical manner. Further, in order to better approximate the physics of gas, an alternative, potential based flow formulation is proposed. The report concludes with a case study based on data from the benchmark library GasLib.}, language = {en} } @misc{LenzSchwarz, author = {Lenz, Ralf and Schwarz, Robert}, title = {Optimal Looping of Pipelines in Gas Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61564}, abstract = {In this paper, we compare several approaches for the problem of gas network expansions using loops, that is, to build new pipelines in parallel to existing ones. We present different model formulations for the problem of continuous loop expansions as well as discrete loop expansions. We then analyze problem properties, such as the structure and convexity of the underlying feasible regions. The paper concludes with a computational study comparing the continuous and the discrete formulations.}, language = {en} } @misc{FuegenschuhVierhaus, author = {F{\"u}genschuh, Armin and Vierhaus, Ingmar}, title = {System Dynamic Optimization in the Sustainability Assessment of a World-Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18148}, abstract = {The System Dynamics (SD) methodology is a framework for modeling and simulating the dynamic behavior of socioeconomic systems. Characteristic for the description of such systems is the occurrence of feedback loops together with stocks and flows. The mathematical equations that describe the system are usually nonlinear. Therefore seemingly simple systems can show a nonintuitive, nonpredictable behavior over time. Controlling a dynamical system means to define a desired final state in which the system should be, and to specify potential interventions from outside that should keep the system on the right track. The central question is how to compute such globally optimal control for a given SD model. We propose a branch-and-bound approach that is based on a bound propagation method, primal heuristics, and spatial branching. We apply our new SD-control method to a small System Dynamics model, that describes the evolution of a social-economic system over time. We examine the problem of steering this system on a sustainable consumption path.}, language = {en} } @misc{BroseFuegenschuhGausemeieretal., author = {Brose, Achim and F{\"u}genschuh, Armin and Gausemeier, Pia and Vierhaus, Ingmar and Seliger, G{\"u}nther}, title = {A System Dynamic Enhancement for the Scenario Technique}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18150}, abstract = {The Scenario Technique is a strategic planning method that aims to describe and analyze potential developments of a considered system in the future. Its application consists of several steps, from an initial problem analysis over an influence analysis to projections of key factors and a definition of the scenarios to a final interpretation of the results. The technique itself combines qualitative and quantitative methods and is an enhancement of the standard Scenario Technique. We use the numerical values gathered during the influence analysis, and embed them in a System Dynamics framework. This yields a mathematically rigorous way to achieve predictions of the system's future behavior from an initial impulse and the feedback structure of the factors. The outcome of our new method is a further way of projecting the present into the future, which enables the user of the Scenario Technique to obtain a validation of the results achieved by the standard method.}, language = {en} } @misc{FuegenschuhVierhaus, author = {F{\"u}genschuh, Armin and Vierhaus, Ingmar}, title = {A Global Approach to the Optimal Control of System Dynamics Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18600}, abstract = {The System Dynamics (SD) methodology is a framework for modeling and simulating the dynamic behavior of socioeconomic systems. Characteristic for the description of such systems is the occurrence of feedback loops together with stocks and flows. The mathematical equations that describe the system are usually ordinary differential equations and nonlinear algebraic constraints. Therefore seemingly simple systems can show a nonintuitive, unpredictable behavior over time. Controlling a dynamical system means to specify potential interventions from outside that should keep the system on the desired track, and to define an evaluation schema to compare different controls among each other, so that a "best" control can be defined in a meaningful way. The central question is how to compute such globally optimal control for a given SD model, that allows the transition of the system into a desired state with minimum effort. We propose a mixed-integer nonlinear programming (MINLP) reformulation of the System Dynamics Optimization (SDO) problem. MINLP problems can be solved by linear programming based branch-and-bound approach. We demonstrate that standard MINLP solvers are not able to solve SDO problem. To overcome this obstacle, we introduce a special-tailored bound propagation method. We apply our new method to a predator-prey model with additional hunting activity as control, and to a mini-world model with the consumption level as control. Numerical results for these test cases are presented.}, language = {en} } @misc{LeitnerLjubicSinnletal., author = {Leitner, Markus and Ljubic, Ivana and Sinnl, Markus and Werner, Axel}, title = {On the Two-Architecture Connected Facility Location Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18610}, abstract = {We introduce a new variant of the connected facility location problem that allows for modeling mixed deployment strategies (FTTC/FTTB/FTTH) in the design of local access telecommunication networks. Several mixed integer programming models and valid inequalities are presented. Computational studies on realistic instances from three towns in Germany are provided.}, language = {en} } @misc{GroetschelRaackWerner, author = {Gr{\"o}tschel, Martin and Raack, Christian and Werner, Axel}, title = {Towards optimizing the deployment of optical access networks}, issn = {1438-0064}, doi = {10.1007/s13675-013-0016-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18627}, abstract = {In this paper we study the cost-optimal deployment of optical access networks considering variants of the problem such as fiber to the home (FTTH), fiber to the building (FTTB), fiber to the curb (FTTC), or fiber to the neighborhood (FTTN). We identify the combinatorial structures of the most important sub-problems arising in this area and model these, e.g., as capacitated facility location, concentrator location, or Steiner tree problems. We discuss modeling alternatives as well. We finally construct a "unified" integer programming model that combines all sub-models and provides a global view of all these FTTx problems. We also summarize computational studies of various special cases.}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An affine covariant composite step method for optimization with PDEs as equality constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53954}, abstract = {We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery.}, language = {en} } @misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Comparing two dual relaxations of large scale train timetabling problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56068}, abstract = {Railway transportation and in particular train timetabling is one of the basic and source application areas of combinatorial optimization and integer programming. We will discuss two well established modeling techniques for the train timetabling problem. In this paper we focus on one major ingredient - the bounding by dual relaxations. We compare two classical dual relaxations of large scale time expanded train timetabling problems - the Lagrangean Dual and Lagrangean Decomposition. We discuss the convergence behavior and show limitations of the Lagrangean Decomposition approach for a configuration based model. We introduce a third dualization approach to overcome those limitations. Finally, we present promising preliminary computational experiments that show that our new approach indeed has superior convergence properties.}, language = {en} } @misc{BorndoerferReutherSchlechteetal., author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Schulz, Christof and Swarat, Elmar and Weider, Steffen}, title = {Duty Rostering in Public Transport - Facing Preferences, Fairness, and Fatigue}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56070}, abstract = {Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.}, language = {en} } @misc{LeitnerLjubicSinnletal., author = {Leitner, Markus and Ljubic, Ivana and Sinnl, Markus and Werner, Axel}, title = {Two algorithms for solving 3-objective k-ArchConFL and IPs in general}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56259}, abstract = {We present two algorithms to solve a 3-objective optimization problem arising in telecommunications access network planning, the k-Architecture Connected Facility Location Problem. The methods can also be used to solve any 3-objective integer linear programming model and can be extended to the multiobjective case. We give some exemplary computations using small and medium-sized instances for our problem.}, language = {en} } @misc{AhmadiGritzbachLundNguyenetal.2015, author = {Ahmadi, Sepideh and Gritzbach, Sascha F. and Lund-Nguyen, Kathryn and McCullough-Amal, Devita}, title = {Rolling Stock Rotation Optimization in Days of Strike: An Automated Approach for Creating an Alternative Timetable}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56425}, year = {2015}, abstract = {The operation of a railway network as large as Deutsche Bahn's Intercity Express (ICE) hinges on a number of factors, such as the availability of personnel and the assignment of physical vehicles to a timetable schedule, a problem known as the rolling stock rotation problem (RSRP). In this paper, we consider the problem of creating an alternative timetable in the case that there is a long-term disruption, such as a strike, and the effects that this alternative timetable has on the resulting vehicle rotation plan. We define a priority measure via the Analytic Hierarchy Process (AHP) to determine the importance of each trip in the timetable and therefore which trips to cancel or retain. We then compare our results with those of a limited timetable manually designed by Deutsche Bahn (DB). We find that while our timetable results in a more expensive rotation plan, its flexibility lends itself to a number of simple improvements. Furthermore, our priority measure has the potential to be integrated into the rolling stock rotation optimization process, in particular, the Rotation Optimizer for Railways (ROTOR) software, via the cost function. Ultimately, our method provides the foundation for an automated way of creating a new timetable quickly, and potentially in conjunction with a new rotation plan, in the case of a limited scenario.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Exploiting Solving Phases for Mixed-Integer Programs}, issn = {1438-0064}, doi = {10.1007/978-3-319-42902-1_1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57098}, abstract = {Modern MIP solving software incorporates dozens of auxiliary algorithmic components for supporting the branch-and-bound search in finding and improving solutions and in strengthening the relaxation. Intuitively, a dynamic solving strategy with an appropriate emphasis on different solving components and strategies is desirable during the search process. We propose an adaptive solver behavior that dynamically reacts on transitions between the three typical phases of a MIP solving process: The first phase objective is to find a feasible solution. During the second phase, a sequence of incumbent solutions gets constructed until the incumbent is eventually optimal. Proving optimality is the central objective of the remaining third phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase concept both with an exact recognition of the optimality of a solution, and provide heuristic alternatives to make use of the concept in practice.}, language = {en} } @misc{D'AndreagiovanniKrolikowskiPulaj, author = {D'Andreagiovanni, Fabio and Krolikowski, Jonatan and Pulaj, Jonad}, title = {A hybrid primal heuristic for Robust Multiperiod Network Design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-44081}, abstract = {We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap.}, language = {en} } @misc{BuesingD'AndreagiovanniRaymond, author = {B{\"u}sing, Christina and D'Andreagiovanni, Fabio and Raymond, Annie}, title = {0-1 Multiband Robust Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-44093}, abstract = {We provide an overview of new theoretical results that we obtained while further investigating multiband robust optimization, a new model for robust optimization that we recently proposed to tackle uncertainty in mixed-integer linear programming. This new model extends and refines the classical Gamma-robustness model of Bertsimas and Sim and is particularly useful in the common case of arbitrary asymmetric distributions of the uncertainty. Here, we focus on uncertain 0-1 programs and we analyze their robust counterparts when the uncertainty is represented through a multiband set. Our investigations were inspired by the needs of our industrial partners in the research project ROBUKOM.}, language = {en} } @misc{BorndoerferKarbsteinMehrgardtetal., author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas}, title = {The Cycle Embedding Problem}, issn = {1438-0064}, doi = {10.1007/978-3-319-28697-6_65}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52788}, abstract = {Given two hypergraphs, representing a fine and a coarse "layer", and a cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP) asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard for general hypergraphs, but it can be solved in polynomial time for graphs. We propose an integer rogramming formulation for the CEP that provides a complete escription of the CEP polytope for the graphical case. The CEP comes up in railway vehicle rotation scheduling. We present computational results for problem instances of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning approach.}, language = {en} } @misc{Humpola, author = {Humpola, Jesco}, title = {Sufficient Pruning Conditions for MINLP in Gas Network Design}, doi = {10.1007/s13675-016-0077-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53489}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology extension problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. In this article we offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speed-up for the necessary computations.}, language = {en} } @misc{DraegertEisenblaetterGamrathetal., author = {Draegert, Andreas and Eisenbl{\"a}tter, Andreas and Gamrath, Inken and Werner, Axel}, title = {Optimal Battery Controlling for Smart Grid Nodes}, issn = {1438-0064}, doi = {10.1007/978-4-431-55420-2_6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53550}, abstract = {Energy storages can be of great value when added to power grids. They introduce the possibility to store and release energy whenever this is favorable. This is particularly relevant, for example, if power supply is volatile (as is the case with renewable energy) and the network is small (so that there are few other nodes that might balance fluctuations in consumption or production). We present models and methods from mathematical optimization for computing an optimized storage schedule for this purpose. We look at alternative optimization objectives, such as smallest possible peak load, low energy costs, or the close approximation of a prescribed load curve. The optimization needs to respect general operational and economic constraints as well as limitations in the use of storage, which are imposed by the chosen storage technology. We therefore introduce alternative approaches for modeling the non-linear properties of energy storages and study their impact on the efficiency of the optimization process. Finally, we present a computational study with batteries as storage devices. We use this to highlight the trade-off between solution quality and computational tractability. A version of the model for the purpose of leveling peaks and instabilities has been implemented into a control system for an office-building smart grid scenario.}, language = {en} } @misc{HarmanSagnol, author = {Harman, Radoslav and Sagnol, Guillaume}, title = {Computing D-optimal experimental designs for estimating treatment contrasts under the presence of a nuisance time trend}, issn = {1438-0064}, doi = {10.1007/978-3-319-13881-7_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53640}, abstract = {We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.}, language = {en} } @misc{BrettHobergPachecoetal.2015, author = {Brett, Charles and Hoberg, Rebecca and Pacheco, Meritxell and Smith, Kyle and Bornd{\"o}rfer, Ralf and Euler, Ricardo and Gamrath, Gerwin and Grimm, Boris and Heismann, Olga and Reuther, Markus and Schlechte, Thomas and Tesch, Alexander}, title = {G-RIPS 2014 RailLab - Towards robust rolling stock rotations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53475}, year = {2015}, abstract = {The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an opportunity for high-achieving graduate-level students to work in teams on a real-world research project proposed by a sponsor from industry or the public sector. Each G-RIPS team consists of four international students (two from the US and two from European universities), an academic mentor, and an industrial sponsor. This is the report of the Rail-Lab project on the definition and integration of robustness aspects into optimizing rolling stock schedules. In general, there is a trade-off for complex systems between robustness and efficiency. The ambitious goal was to explore this trade-off by implementing numerical simulations and developing analytic models. In rolling stock planning a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects, have to be considered in an integrated model. General hypergraphs provide the modeling power to tackle those requirements. Furthermore, integer programming approaches are able to produce high quality solutions for the deterministic problem. When stochastic time delays are considered, the mathematical programming problem is much more complex and presents additional challenges. Thus, we started with a basic variant of the deterministic case, i.e., we are only considering hypergraphs representing vehicle composition and regularity. We transfered solution approaches for robust optimization from the airline industry to the setting of railways and attained a reasonable measure of robustness. Finally, we present and discuss different methods to optimize this robustness measure.}, language = {en} } @misc{HumpolaFuegenschuhLehmann, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Lehmann, Thomas}, title = {A Primal Heuristic for MINLP based on Dual Information}, issn = {1438-0064}, doi = {10.1007/s13675-014-0029-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43110}, abstract = {We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Enhancing MIP branching decisions by using the sample variance of pseudo-costs}, issn = {1438-0064}, doi = {10.1007/978-3-319-18008-3_14}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54591}, abstract = {The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning of the search, such information is usually collected via an expensive look-ahead strategy called strong-branching until variables are considered reliable. The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains. We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong-branching look-aheads on variables whose pseudo-costs show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a two-sample Student-t test for filtering branching candidates with a high probability to be better than the best history candidate. Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.}, language = {en} } @misc{PfeufferWerner, author = {Pfeuffer, Frank and Werner, Axel}, title = {Adaptive telecommunication network operation with a limited number of reconfigurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55547}, abstract = {Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators' concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch \& Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin.}, language = {en} } @misc{BorndoerferSagnolSchwartz, author = {Bornd{\"o}rfer, Ralf and Sagnol, Guillaume and Schwartz, Stephan}, title = {An Extended Network Interdiction Problem for Optimal Toll Control}, issn = {1438-0064}, doi = {10.1016/j.endm.2016.03.040}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55405}, abstract = {We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.}, language = {en} } @misc{BorndoerferKlugLamorgeseetal., author = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent Success Stories on Optimization of Railway Systems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53726}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @misc{UsluWerner, author = {Uslu, Svenja and Werner, Axel}, title = {A Two-Phase Method for the Biobjective k-Architecture Connected Facility Location Problem and Hypervolume Computation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53753}, abstract = {We apply customized versions of the ε-constraint Method and the Two-Phase Method to a problem originating in access network planning. We introduce various notions of quality measures for approximated/partial sets of nondominated points, utilizing the concept of hypervolume for biobjective problems. We report on computations to assess the performance of the two methods in terms of these measures.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Adaptive Large Neighborhood Search for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71167}, abstract = {Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.}, language = {en} } @phdthesis{Reuther, author = {Reuther, Markus}, title = {Mathematical Optimization of Rolling Stock Rotations}, abstract = {We show how to optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical ptimization problem is called rolling stock rotation problem (RSRP) and the leitmotiv of the thesis is RotOR, i.e., a highly integrated optimization algorithm for the RSRP. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. In this application, RSRPs have to be solved which (A) require many different aspects to be simultaneously considered, (B) are typically of large scale, and (C) include constraints that have a difficult combinatorial structure. This thesis suggests answers to these issues via the following concepts. (A) The main model, which RotOR uses, relies on a hypergraph. The hypergraph provides an easy way to model manifold industrial railway requirements in great detail. This includes well known vehicle composition requirements as well as relatively unexplored regularity stipulations. At the same time, the hypergraph directly leads to a mixed-integer programming (MIP) model for the RSRP. (B) The main algorithmic ingredient to solve industrial instances of the RSRP is a coarse-to-fine (C2F) column generation procedure. In this approach, the hypergraph is layered into coarse and fine layers that distinguish different levels of detail of the RSRP. The coarse layers are algorithmically utilized while pricing fine columns until proven optimality. Initially, the C2F approach is presented in terms of pure linear programming in order to provide an interface for other applications. (C) Rolling stock rotations have to comply to resource constraints in order to ensure, e.g., enough maintenance inspections along the rotations. These constraints are computationally hard, but are well known in the literature on the vehicle routing problem (VRP). We define an interface problem in order to bridge between the RSRP and the VRP and derive a straightforward algorithmic concept, namely regional search (RS), from their common features and, moreover, differences. Our RS algorithms show promising results for classical VRPs and RSRPs. In the first part of the thesis we present these concepts, which encompass its main mathematical contribution. The second part explains all modeling and solving components of RotOR that turn out to be essential in its industrial application. The thesis concludes with a solution to a complex re-optimization RSRP that RotOR has computed successfully for DBF. In this application all ICE vehicles of the ICE-W fleets of DBF had to be redirected past a construction site on a high-speed line in the heart of Germany.}, language = {en} } @misc{GeorgesGleixnerGojicetal., author = {Georges, Alexander and Gleixner, Ambros and Gojic, Gorana and Gottwald, Robert Lion and Haley, David and Hendel, Gregor and Matejczyk, Bartlomiej}, title = {Feature-Based Algorithm Selection for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68362}, abstract = {Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance. In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out. We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented.}, language = {en} } @misc{BreugemBorndoerferSchlechteetal., author = {Breugem, Thomas and Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Schulz, Christof}, title = {A Three-Phase Heuristic for Cyclic Crew Rostering with Fairness Requirements}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74297}, abstract = {In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20\% in just a few minutes.}, language = {en} } @phdthesis{Beckenbach2019, author = {Beckenbach, Isabel}, title = {Matchings and Flows in Hypergraphs}, year = {2019}, abstract = {In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of K{\"o}nig and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall's condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.}, language = {en} } @misc{Serrano, author = {Serrano, Felipe}, title = {Visible points, the separation problem, and applications to MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74016}, abstract = {In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require that every valid cut separating the infeasible point from the restricted feasible region is still valid for the original feasible region. We translate this requirement in terms of the separation problem and the reverse polar. In particular, if the reverse polar of the restricted feasible region is the same as the reverse polar of the feasible region, then any cut valid for the restricted feasible region that \emph{separates} the infeasible point, is valid for the feasible region. We show that the reverse polar of the \emph{visible points} of the feasible region from the infeasible point coincides with the reverse polar of the feasible region. In the special where the feasible region is described by a single non-convex constraint intersected with a convex set we provide a characterization of the visible points. Furthermore, when the non-convex constraint is quadratic the characterization is particularly simple. We also provide an extended formulation for a relaxation of the visible points when the non-convex constraint is a general polynomial. Finally, we give some conditions under which for a given set there is an inclusion-wise smallest set, in some predefined family of sets, whose reverse polars coincide.}, language = {en} } @misc{SahinAhmadiBorndoerferetal., author = {Sahin, Guvenc and Ahmadi, Amin and Bornd{\"o}rfer, Ralf and Schlechte, Thomas}, title = {Multi-Period Line Planning with Resource Transfers}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74662}, abstract = {Urban transportation systems are subject to a high level of variation and fluctuation in demand over the day. When this variation and fluctuation are observed in both time and space, it is crucial to develop line plans that are responsive to demand. A multi-period line planning approach that considers a changing demand during the planning horizon is proposed. If such systems are also subject to limitations of resources, a dynamic transfer of resources from one line to another throughout the planning horizon should also be considered. A mathematical modelling framework is developed to solve the line planning problem with transfer of resources during a finite length planning horizon of multiple periods. We analyze whether or not multi-period solutions outperform single period solutions in terms of feasibility and relevant costs. The importance of demand variation on multi-period solutions is investigated. We evaluate the impact of resource transfer constraints on the effectiveness of solutions. We also study the effect of line type designs and question the choice of period lengths along with the problem parameters that are significant for and sensitive to the optimality of solutions.}, language = {en} } @misc{HendelAndersonLeBodicetal., author = {Hendel, Gregor and Anderson, Daniel and Le Bodic, Pierre and Pfetsch, Marc}, title = {Estimating the Size of Branch-And-Bound Trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78144}, abstract = {This paper investigates the estimation of the size of Branch-and-Bound (B\&B) trees for solving mixed-integer programs. We first prove that the size of the B\&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B\&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B\&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B\&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP.}, language = {en} } @misc{LenzSerrano, author = {Lenz, Ralf and Serrano, Felipe}, title = {Tight Convex Relaxations for the Expansion Planning Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81459}, abstract = {Secure energy transport is considered as highly relevant for the basic infrastructure of nowadays society and economy. To satisfy increasing demands and to handle more diverse transport situations, operators of energy networks regularly expand the capacity of their network by building new network elements, known as the expansion planning problem. A key constraint function in expansion planning problems is a nonlinear and nonconvex potential loss function. In order to improve the algorithmic performance of state-of-the-art MINLP solvers, this paper presents an algebraic description for the convex envelope of this function. Through a thorough computational study, we show that this tighter relaxation tremendously improve the performance of the MINLP solver SCIP on a large test set of practically relevant instances for the expansion planning problem. In particular, the results show that our achievements lead to an improvement of the solver performance for a development version by up to 58\%.}, language = {en} } @misc{Lenz, author = {Lenz, Ralf}, title = {Pipe Merging for Transient Gas Network Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82116}, abstract = {In practice, transient gas transport problems frequently have to be solved for large-scale gas networks. Gas network optimization problems typically belong to the class of Mixed-Integer Nonlinear Programming Problems (MINLP). However current state-of-the-art MINLP solvers are not yet mature enough to solve large-scale real-world instances. Therefore, an established approach in practice is to solve the problems with respect to a coarser representation of the network and thereby reducing the size of the underlying model. Two well-known aggregation methods that effectively reduce the network size are parallel and serial pipe merges. However, these methods have only been studied in stationary gas transport problems so far. This paper closes this gap and presents parallel and serial pipe merging methods in the context of transient gas transport. To this end, we introduce the concept of equivalent and heuristic subnetwork replacements. For the heuristic methods, we conduct a huge empirical evaluation based on real-world data taken from one of the largest gas networks in Europe. It turns out that both, parallel and serial pipe merging can be considered as appropriate aggregation methods for real-world transient gas flow problems.}, language = {en} } @misc{AndersonHendelLeBodicetal., author = {Anderson, Daniel and Hendel, Gregor and Le Bodic, Pierre and Viernickel, Jan Merlin}, title = {Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72653}, abstract = {We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases.}, language = {en} } @misc{Wyczik, type = {Master Thesis}, author = {Wyczik, Christopher}, title = {Optimierung von Deployment- und Umgebungs-Integrit{\"a}t durch ein dezentrales Konfigurationsrepository auf Basis einer Blockchain}, pages = {44}, abstract = {Viele Firmen nutzen f{\"u}r ihre eigenen Softwareentwicklungen verschiedene Server mit unterschiedlichen Konfigurationen. Manche Server werden dazu eingestzt das Verhalten einer Software in einer bestimmten Umgebung zu testen und andere dienen zur Bereitstellung der Software f{\"u}r den Endnutzer. Hierbei ist es wichtig, dass die Konfiguration der Server regelm{\"a}ßig {\"u}berpr{\"u}ft wird. Eine solche Sicherstellung der Deployment- und Umgebungs-Integrit{\"a}t wird meistens durch eine Mitarbeiter der Firma oder durch einen externen Dienstleister erbracht. D.h. die Firma muss sich auf die Zuverl{\"a}ssigkeit eines Mitarbeiters oder einer externen Dienstleistung verlassen, bie zunehmender Komplexit{\"a}t ist sie sogar abh{\"a}ngig. Das Ziel dieser Masterarbeit ist es, zu untersuchen, ob die Sicherstellung der Deployment- und Umgebungs-Integrit{\"a}t durch automatisierte kryptografische Beweise, anstelle externer Dienstleistungen oder anderer Mitarbeiter, gew{\"a}hrleistet werden kann. Als Anwendungsfall dient die Toll Collect GmbH. Im ersten Teil dieser Arbeit wird das Matheamtische Modell einer Blockchain erl{\"a}utert. die Blockchain wurde erstmals in einem Dokument, welches unter dem Pseudonym Satoshi Nakamoto ver{\"o}ffentlicht wurde, beschrieben. Die erste große Anwendungen der Blockchain ist das dezentrale Zahlungssystem Bitcoin. Im zweiten Teil dieser Arbeit wird die Softwareimplementierung vorgestellt, welche im Rahmen dieser Arbeit entstanden ist. Mithilfe dieses Programms kann die Deployment- und Umgebungs-Integrit{\"a}t durch eine heirf{\"u}hr entwickelte Blockchainl{\"o}sung dezentralisiert werden. Es wird außerdem der {\"U}bergang vom Mathematischen Modell zur Implementierung gezeigt.}, language = {de} } @masterthesis{Akil, type = {Bachelor Thesis}, author = {Akil, Fatima}, title = {Lineare Gleichungssysteme modulo T}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71560}, pages = {52}, abstract = {Mit dem Voranschreiten der Technologie erhalten die {\"o}ffentlichen Verkehrsmittel eine gr{\"o}ßere Bedeutung. Die Bef{\"o}rderung mehrerer Personen er{\"o}ffnet der Gesellschaft viele M{\"o}glichkeiten, unter Anderem den Vorteil der Zeitersparnis. Die Dauer des Verkehrswegs mit {\"o}ffentlichen Verkehrsmitteln ist h{\"a}ufig geringer, als die mit individuellen Verkehrsmitteln. Jedes {\"o}ffentliche Transportmittel ist mit einem Fahrplan versehen. Dieser bietet Passagieren, die {\"o}ffentliche Verkehrsmittel {\"o}fter nutzen, eine Strukturierung und Planung ihrer Zeit. Dabei lassen sich Taktfahrpl{\"a}ne aufgrund ihres periodischen Verhaltens leicht einpr{\"a}gen. Dieses periodische Verhalten ist durch mathematische Modellierungen darstellbar. Das pers{\"o}nliche Nutzverhalten vieler B{\"u}rger im Personenverkehr ist auf die {\"o}ffentlichen Verkehrsmittel beschr{\"a}nkt. Diese beinhalten im Gegensatz zum individuellen Verkehrsmittel eine Wartezeit. Dabei stellt sich die Frage, ob man anhand mathematischer Modelle diese Wartezeit minimieren kann. Eine bekannte mathematische Modellierung dieses Problems ist das Periodic Event Scheduling Problem (PESP). Die optimale Planung eines periodischen Taktfahrplanes steht im Vordergrund. W{\"a}hrend ich dieses Problem betrachtet habe, wurde ich auf das Rechnen mit linearen Gleichungssystemen modulo T aufmerksam. Bei periodischen Taktfahrpl{\"a}nen wird ein einheitliches zeitliches Muster, welches sich nach T Minuten wiederholt, betrachtet. Das dabei zu betrachtende L{\"o}sungsproblem er{\"o}ffnet ein Teilgebiet der Mathematik, welches bislang nicht im Vordergrund stand: Das L{\"o}sen linearer Gleichungen modulo T, wobei T f{\"u}r die Zeit in Minuten steht und somit 60 ist. Da 60 keine Primzahl ist, kann - wie im Laufe der Arbeit pr{\"a}sentiert - das lineare Gleichungssystem nicht mehr {\"u}ber einen K{\"o}rper gel{\"o}st werden. Lineare Gleichungssysteme werden nun {\"u}ber Nicht-K{\"o}rpern betrachtet. Die Literatur weist sowohl im deutschsprachigem als auch im englischsprachigen Raum wenig Umfang bez{\"u}glich linearer Gleichungssysteme {\"u}ber Nicht-K{\"o}rper auf. Der Bestand an Fachliteratur bez{\"u}glich den Themen lineare diophantische Gleichungssysteme, Hermite- Normalform und Smith-Normalform ist zurzeit gering, dennoch erreichbar, beispielsweise in [1], welches in dieser Bachelorarbeit genutzt wurde. Insbesondere wurde ich bei der Suche nach geeigneter Literatur zu linearen Gleichungssystemen {\"u}ber Restklassenringe, die keinen K{\"o}rper bilden, nicht f{\"u}ndig. Dabei recherchierte ich sowohl in den Universit{\"a}tsbibliotheken als auch in webbasierenden Suchmaschinen. Aufgrund dem geringen Bestand an Fachliteratur in diesem Kontext, war ich gezwungen, an vielen Stellen eigene logische Verkn{\"u}pfungen zu konzipieren und zu beweisen. Dies brachte viele Schwierigkeiten mit sich, die mit bestm{\"o}glichem Verst{\"a}ndnis bearbeitet wurden. Abseits der Zug{\"a}nglichkeit der Literatur, finde ich es sehr {\"u}berraschend, dass sich viele Professoren der Mathematik mit diesem Themenbereich nicht besch{\"a}ftigten. Insbesondere gingen von den Dozenten, die ich um Literaturempfehlung bat, kein Werk aus. Damit wurde das Thema "Lineare Gleichungssysteme Modulo T" einerseits eine große Herausforderung, andererseits eine große Motivation, da ich mit dieser Bachelorarbeit vielen Interessenten der Mathematik als Sekund{\"a}rliteratur dienen kann.}, language = {de} } @masterthesis{Vornberger, type = {Bachelor Thesis}, author = {Vornberger, Leo}, title = {Approximation von Windkomponenten in der Luftfahrt durch lineare Interpolation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71570}, pages = {49}, abstract = {Das Wind-Interpolation-Problem (WIP) ist ein bisher selten diskutiertes Problem der Flugplanungsoptimierung, bei dem es darum geht, Wind-Komponenten auf einer Luftstraße zu approximieren. Anhand von Winddaten, die vektoriell an den Gitterpunkten eines den Globus umspannenden Gitters vorliegen, soll bestimmt werden, wie viel Wind entlang der Luftstraße und quer zu ihr weht. Thema dieser Arbeit ist ein Spezialfall des WIP, n{\"a}mlich das statische WIP auf einer Planfl{\"a}che (SWIPP). Dazu wird zuerst ein Algorithmus besprochen, der das SWIPP zwar l{\"o}st, aber einem Ansatz zugrunde liegt, der bei genauerem Hinsehen nicht sinnvoll erscheint: hier wird Wind zwischen vier Punkten interpoliert, wozu es keine triviale Methode gibt. {\"A}hnlich zu diesem Algorithmus, der heute als State-of-the-Art gilt, wird als Ergebnis dieser Arbeit ein neuer Algorithmus vorgestellt, der das SWIPP akkurater und schneller l{\"o}st. Hier wird deutlich seltener auf die Interpolation zwischen vier Punkten zur{\"u}ckgegriffen - stattdessen wird fast immer linear zwischen zwei Punkten interpoliert. Die Algorithmen zum L{\"o}sen des SWIPP werden auf ihre Genauigkeit, asymptotische Laufzeit und Geschwindigkeit untersucht und verglichen. Als Testareal dienen zum einen echte Wetterdaten sowie das Luftstraßennetz, das die Erde umspannt, und zum anderen ein eigens generiertes Windfeld und fiktive Luftstraßen. Es wird gezeigt, dass der hier vorgestellte Algorithmus die State-of-the-Art-Variante in allen genannten Aspekten {\"u}bertrifft.}, language = {de} } @masterthesis{Husemann, type = {Bachelor Thesis}, author = {Husemann, Christoph}, title = {Multimodales Routing mit Leihfahrradsystemen am Beispiel Berlins}, pages = {45}, abstract = {The aim of multimodal routing is to extract the best integrated journey of multiple transportation networks. The integration of bike rental networks is challenging particularly with respect to recognizing a valid path dependent on real-time availability of bike boarding and alighting places. In this work a common model for station-based bike rental networks extended with boarding possibilities for free floating bikes is presented. Moreover a new model for alighting inside a free floating area is introduced. In addition, a prototype of multimodal routing with a bike rental network in Berlin is developed by extending the OpenTripPlanner software. Due to recent public dispute about bike rental networks in Berlin, an examination about speed-up potential of an integrated bike rental network in the public transit of Berlin is provided.}, language = {de} } @masterthesis{Krug, type = {Bachelor Thesis}, author = {Krug, Matthias}, title = {Analysis of the Shortest Path Problem with Piecewise Constant Crossing Costs}, pages = {37}, language = {en} } @misc{Mett, type = {Master Thesis}, author = {Mett, Fabian}, title = {{\"U}ber die optimale Platzierung von Ladestationen f{\"u}r Elektrobusse}, pages = {76}, abstract = {In dieser Arbeit wird die Platzierung von Ladestationen f{\"u}r Elektrobusse untersucht. Dabei soll f{\"u}r eine Menge an gegebenen Linien eine Menge an Ladestationen gefunden werden, sodass jede Linie mit Nutzung der Ladestationen befahren werden kann und gleichzeitig die Kosten minimal sind. Zun{\"a}chst wird der Fall betrachtet, dass die Batterie an jeder Station komplett vollgeladen werden k{\"o}nnte. Dieses Problem stellt sich als NP-schwer heraus. F{\"u}r einige einfachere F{\"a}llewerden zudem Algorithmen entwickelt und untersucht. Anschließend wird der Fall einer unbegrenzt großen Batterie betrachtet, wobei an jeder Station derselbe Wert geladen werden kann. Auch dieses Problem ist NP-schwer. Erneut werden Algorithmen zur L{\"o}sung vereinfachter Problemstellungen gegeben und analysiert. Wird zudem angenommen, an jeder Station w{\"u}rde ein individueller Wert geladen, so ist das Problem schon f{\"u}r nur eine einzige Linie NP-schwer. Dennoch werden zwei exakte und ein approximierender Algorithmus entwickelt. Schließlich wird eine Batteriekapazit{\"a}t hinzugef{\"u}gt und die zuvor entwickelten Algorithmen werden entsprechend angepasst. F{\"u}r die abschließende Problemdefinition werden verschiedene Batteriegr{\"o}ßen betrachtet und es werden zwei gemischt-ganzzahlige Programme aufgestellt. Anhand von existierenden Buslinien aus Berlin werden diese untersucht. Dabei stellt sich heraus, dass die Batteriekosten einen deutlich gr{\"o}ßeren Teil der Kosten ausmachen als die Ladestationen. Zudem sollten kleinere Batterien statt gr{\"o}ßerer und mehr Ladestationen genutzt werden.}, language = {de} } @masterthesis{Noeckel, type = {Bachelor Thesis}, author = {N{\"o}ckel, Celine}, title = {Bidirectional A* Search on Time-Dependent Airway Networks}, pages = {51}, abstract = {This thesis deals with a new algorithm for finding Shortest Paths on Airway Networks. It is about a Bidirectional A* Search, a Greedy algorithm exploring a network from two sides instead of one. We will use it to solve the so-called 'Horizontal Flight Trajectory Problem', where one searches for an aircraft trajectory between two airports of minimal costs on an Airway Network. The given network will be modeled as a directed graph and in order to reflect reality we concentrate on the dynamic version. Here a timedependent cost function for all arcs is integrated, that shall represent the winds blowing. This way we model the Horizontal Flight Trajectory Problem mathematically as a Time-Dependent Shortest Path Problem. The basic algorithm idea derives from the algorithm presented in 'Bidirectional A* Search on Time-Dependent Road Networks' [1], where a similar setting is elaborated for road networks. The algorithm procedure bears on a modified generalization of Dijkstra's algorithm, made bidirectional and improved in several aspects. As for the backwards search the arrival times are not known in advance, the reversed graph it occurs on has to be weighted by a lower bound. Contrary to the static case the forwards search still has to go on, when they 'meet' in one node. In the static case, the shortest path would have been found at this point. For road networks the TDSPP is well-studied, for airway networks cannot be found as much in literature. In order to test efficiency, we implement Dijkstra's algorithm, unidirectional A* Search and Bidirectional A* Search. We draw up how potential functions for the static case could look like and that with a suitable potential A* Search with works approx. 7 times faster than Dijkstra in the dynamic case. Our computations lead also to the result, that the unidirectional A* Search works even better on the network than our new bidirectional approach does. On average it labels fewer nodes and also yields 1,7 times faster to the solutions. For assessing the efficiency of the different algorithms we compare the running times and to exclude processor characteristics we consider also the set labels relative to the labels on the resulting optimal path. In addition, we present examples of routes visually and explain shortly why there appear local differences regarding performance of A* Search and Bidirectional A* Search.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Reduction-based exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70958}, language = {en} } @misc{Serrano, author = {Serrano, Felipe}, title = {Intersection cuts for factorable MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71105}, abstract = {Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection cuts that exploits the bounds of the domain. Finally, we propose an extension of monoidal strengthening to take advantage of the integrality of the non-basic variables.}, language = {en} } @misc{Euler, type = {Master Thesis}, author = {Euler, Ricardo}, title = {The Bienstock Zuckerberg Algorithm for the Rolling Stock Rotation Problem}, pages = {73}, abstract = {The design of rolling stock rotations is an important task in large-scale railway planning. This so-called rolling stock rotation problem (RSRP) is usually tackled using an integer programming approach. Markus Reuther did so in his dissertation [15] for the ICE railway network of DB ("Deutsche Bahn"). Due to the size of the network and the complexity of further technical requirements, the resulting integer problems tend to become very large and computationally involved. In this thesis, we tackle the linear programming relaxation of the RSRP integer program. We will do so by applying a modified version of an algorithm recently proposed by Dan Bienstock and Mark Zuckerberg [2] for the precedence constrained production scheduling problem that arises in open pit mine scheduling. This problem contains a large number of "easy" constraints and a relatively small number of "hard" constraints. We will see that a similar problem structure can also be found in the RSRP. The Bienstock-Zuckerberg algorithm relies on applying Lagrangian relaxation to the hard constraints as well as on partitioning the variable set. We propose three different partition schemes which try to exploit the specific problem structure of the RSRP. Furthermore, we will discuss the influence of primal degeneracy on the algorithm's performance, as well as possible merits of perturbating the right-hand side of the constraint matrix. We provide computational results to assess the performance of those approaches.}, language = {en} } @masterthesis{Wirsching, type = {Bachelor Thesis}, author = {Wirsching, Marie}, title = {Der Einfluss von Langzahlarithmetik auf das Gewichtsraumpolyeder in mehrkriterieller Optimierung}, pages = {59}, abstract = {Die Arbeit befasst sich mit einem gewichtsraumbasierten Algorithmus, der ganzzahlige und lineare Optimierungsprobleme mit mehreren Zielfunktionen l{\"o}st und die Menge der unterst{\"u}tzt nicht dominierten Punkte ermittelt. Die dabei erzeugten Gewichtsraumpolyeder sind das entscheidende Mittel, um die gesuchte L{\"o}sungsmenge zu bestimmen. Aus softwaretechnischer Sicht sind numerische Ungenauigkeiten potentielle Fehlerquellen, die sich negativ auf das Endergebnis auswirken. Aus diesem Grund untersuchen wir anhand von Zuweisungs- und Rucksackinstanzen mit 3 Zielfunktionen, inwieweit der Gebrauch von Langzahlarithmetik die Gewichtsraumpolyeder und die damit verbundene Menge der unterst{\"u}tzt nicht dominierten Punkte beeinflusst.}, language = {de} } @misc{Jeschke, type = {Master Thesis}, author = {Jeschke, Bj{\"o}rn-Marcel}, title = {Alternativen zum Dijkstra Algorithmus in der (Nah-) Verkehrsoptimierung}, pages = {74}, abstract = {In dieser Arbeit betrachten wir das Problem, f{\"u}r den Fahrplan eines (Nah-) Verkehrsnetzes schnellste Wege zu berechnen. Da die Verkehrsmittel zu unterschiedlichen Zeiten von den einzelnen Haltestellen/Bahnh{\"o}fen abfahren, kann das Problem nicht ohne Weiteres mit einem „statischen" Graphen modelliert werden. Es gibt zwei unterschiedliche Ans{\"a}tze f{\"u}r dieses zeitabh{\"a}ngige Problem: Erstens k{\"o}nnen die verschiedenen An-/Abfahrtereignisse an einem Halt durch „Kopien" dargestellt werden, das ist das zeit-expandierte Modell. Zweitens k{\"o}nnen die Gewichte der Kanten zeitabh{\"a}ngig sein, das ist das zeitabh{\"a}ngige Modell. Wir untersuchen in dieser Arbeit, wie der „klassische" Dijkstra-Algorithmus und der A* Algorithmus mit einer geeigneten Heuristik im Vergleich abschneiden. Die gew{\"a}hlte Heuristik ist der Abstand zum Zielknoten, wenn die Abfahrtszeiten ignoriert werden. Nach unseren Untersuchungen zeigt sich, dass der A* Algorithmus dem Dijkstra-Algorithmus weit {\"u}berlegen ist f{\"u}r gen{\"u}gend große Nahverkehrsnetze. Wir testen anhand der echten Verkehrsnetze von Berlin und Aachen. Unsere Berechnungen zeigen, dass die gew{\"a}hlte Heuristik besonders gut ist f{\"u}r Start- und Zielknoten, welche unabh{\"a}ngig von ihrer Distanz nur 1-2 verschiedene m{\"o}gliche k{\"u}rzeste Pfade f{\"u}r alle Zeitschritte haben. Dort ist der A* Algorithmus bis zu 20-mal schneller. Dies kommt aber nicht h{\"a}ufig in unseren Testinstanzen vor. Die einzelnen Laufzeitvergleich zeigen, dass der A* Algorithmus durchschnittlich 7-mal so schnell ist wie der Dikstra-Algorithmus.}, language = {de} } @misc{Oleynikova, type = {Master Thesis}, author = {Oleynikova, Ekaterina}, title = {Mathematical optimization of joint order batching and picker routing problems}, pages = {60}, abstract = {In this thesis we study order picking optimization problems for a two-blocks rectangle warehouse layout. We present combinatorial formulations and linear programming models based on the Steiner graph representation for order batching, picker routing, and joint order batching and picker routing problems. A special case of the latter is considered. This case assumes that each order contains exactly one item and each item can be picked from different possible locations in a warehouse. The underlying optimization problem is called joint multi-location order batching and picker routing problem (JMLOBPRP). Since having only one-item orders turns the JMLOBPRP into a special case of a capacitated vehicle routing problem, we suggest to implement algorithmic approaches for those to solve the JMLOBPRP. In particular, we define the JMLOBPRP as a generalization of the resource constrained assignment problem, for which a regional search method exists. The intention of the thesis is to investigate how a relaxation of the JMLOBPRP, a so-called group assignment problem (GrAP), can be solved following the ideas of regional search. We present a mathematical model of the GrAP and prove that it is NP-hard. Furthermore, we propose a novel heuristic algorithm for the GrAP. We call this method a network search algorithm, as it is based on a Lagrangian relaxation of the GrAP, which is solved by the network simplex method. On each its iteration network search examines a solution region suggested by the network simplex algorithm and improves the incumbent solution. Numerical experiments are conducted to assess a performance of the network search method. We create more realistic problem instances. The proposed algorithm is compared to the integer optimal solution of the GrAP and optimal fractional solution of its linear relaxation. Both computed using the commercial linear solver Gurobi. Our experiments show that the developed network search algorithm leads to the hight-quality solution within a short computing time. The results obtained testing large problem instances which cannot be solved by Gurobi within a reasonable computing time, show that the network search method provides a solution approach which can be used in practice.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {ASTS Orientations on Undirected Graphs: Structural analysis and enumeration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69632}, abstract = {All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no "dead ends" in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and an outgoing flow. In this paper we will call orientations that satisfy these conditions acyclic source-transhipment-sink orientations (ASTS-orientation) and study their structure. In particular, we characterize graphs that allow for such an orientation, describe a way to enumerate all possible ASTS-orientations of a given graph, present an algorithm to simplify and decompose a graph before such an enumeration and shed light on the role of zero flows in the context of ASTS-orientations.}, language = {en} } @misc{LenzBecker, author = {Lenz, Ralf and Becker, Kai-Helge}, title = {Optimization of Capacity Expansion in Potential-driven Networks including Multiple Looping - A comparison of modelling approaches}, issn = {1438-0064}, doi = {10.1007/s00291-021-00648-7}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69726}, abstract = {In commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called "potential-driven" network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones ("looping"). The paper introduces a new mixed-integer non-linear programming (MINLP) model and a new non-linear programming (NLP) model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally. On this basis, we give recommendations about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models. Moreover, the paper is the first to include the practically relevant option that a particular pipeline may be looped several times.}, language = {en} } @misc{SerranoMunoz, author = {Serrano, Felipe and Mu{\~n}oz, Gonzalo}, title = {Maximal Quadratic-Free Sets}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-76922}, abstract = {The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined as a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. To the best of our knowledge, this work is the first to provide maximal quadratic-free sets.}, language = {en} } @misc{EiflerGleixnerPulaj, author = {Eifler, Leon and Gleixner, Ambros and Pulaj, Jonad}, title = {Chv{\´a}tal's Conjecture Holds for Ground Sets of Seven Elements}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70240}, abstract = {We establish a general computational framework for Chv{\´a}tal's conjecture based on exact rational integer programming. As a result we prove Chv{\´a}tal's conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used.}, language = {en} } @phdthesis{Pulaj, author = {Pulaj, Jonad}, title = {Cutting Planes for Union-Closed Families}, abstract = {Frankl's (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen's Theorem characterizes the existence of weights which determine whether a given UC family ensures Frankl's conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen's Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl's conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind. Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl's conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families.}, language = {en} } @misc{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86055}, abstract = {Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @misc{HillerBecker, author = {Hiller, Benjamin and Becker, Kai-Helge}, title = {Improving relaxations for potential-driven network flow problems via acyclic flow orientations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69622}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles in the network. We propose acyclic flow orientations as a combinatorial relaxation of feasible solutions of potential-driven flow problems and show how they can be used to strengthen existing relaxations. First computational results indicate that the strengthend model is much tighter than the original relaxation, thus promising a computational advantage.}, language = {en} } @misc{HillerWalther, author = {Hiller, Benjamin and Walther, Tom}, title = {Improving branching for disjunctive polyhedral models using approximate convex decompositions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67462}, abstract = {Disjunctive sets arise in a variety of optimization models and much esearch has been devoted to obtain strong relaxations for them. This paper focuses on the evaluation of the relaxation during the branch-and-bound search process. We argue that the branching possibilities (\ie binary variables) of the usual formulations are unsuitable to obtain strong bounds early in the search process as they do not capture the overall shape of the the entire disjunctive set. To analyze and exploit the shape of the disjunctive set we propose to compute a hierarchy of approximate convex decompositions and show how to extend the known formulations to obtain improved branching behavior.}, language = {en} } @misc{HillerSaitenmacherWalther, author = {Hiller, Benjamin and Saitenmacher, Ren{\´e} and Walther, Tom}, title = {Analysis of operating modes of complex compressor stations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68179}, abstract = {We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77684}, abstract = {In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested.}, language = {en} } @misc{Schwartz, author = {Schwartz, Stephan}, title = {An Overview of Graph Covering and Partitioning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79431}, abstract = {While graph covering is a fundamental and well-studied problem, this field lacks a broad and unified literature review. The holistic overview of graph covering given in this article attempts to close this gap. The focus lies on a characterization and classification of the different problems discussed in the literature. In addition, notable results and common approaches are also included. Whenever appropriate, our review extends to the corresponding partioning problems.}, language = {en} } @misc{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Vertex Covering with Capacitated Trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82616}, abstract = {The covering of a graph with (possibly disjoint) connected subgraphs is a fundamental problem in graph theory. In this paper, we study a version to cover a graph's vertices by connected subgraphs subject to lower and upper weight bounds, and propose a column generation approach to dynamically generate feasible and promising subgraphs. Our focus is on the solution of the pricing problem which turns out to be a variant of the NP-hard Maximum Weight Connected Subgraph Problem. We compare different formulations to handle connectivity, and find that a single-commodity flow formulation performs best. This is notable since the respective literature seems to have dismissed this formulation. We improve it to a new coarse-to-fine flow formulation that is theoretically and computationally superior, especially for large instances with many vertices of degree 2 like highway networks, where it provides a speed-up factor of 10 over the non-flow-based formulations. We also propose a preprocessing method that exploits a median property of weight constrained subgraphs, a primal heuristic, and a local search heuristic. In an extensive computational study we evaluate the presented connectivity formulations on different classes of instances, and demonstrate the effectiveness of the proposed enhancements. Their speed-ups essentially multiply to an overall factor of 20. Overall, our approach allows the reliabe solution of instances with several hundreds of nodes in a few minutes. These findings are further corroborated in a comparison to existing districting models on a set of test instances from the literature.}, language = {en} } @misc{Mattrisch, type = {Master Thesis}, author = {Mattrisch, Lisa}, title = {Optimization of a Master Surgery Schedule}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69996}, abstract = {During the past years hospitals saw themselves confronted with increasing economical pressure (WB06, p. V). Therefore, optimizing the general operational procedures has gained in importance. The revenue of a hospital depends on the kinds and quantity of treatments performed and on the effcient use and utilization of the corresponding resources. About 25 - 50\% of the treatment costs of a patient needing surgery incurs in the operating rooms (WB06, p. 58). Hence skillful management of the operating rooms can have a large impact on the overall revenue of a hospital. Belien and Demeulemeester (BD07) describe the planning of operating room (OR) schedules as a multi-stage process. In the first stage OR time is allocated to the hospitals specialties and capacities and resources are adjusted. In the second stage a master surgery schedule (MSS) is developed, that is a timetable for D days that specifies the amount of OR time assigned to the specialties on every individual day. After D days this schedule will be repeated without any changes. Hence, developing an MSS is a long-term problem. Finally, specialties will schedule specific surgeries within their assigned OR time. In this work we will focus on the development of the MSS that maximizes the revenue of the hospital. Our main focus will be to ensure that the capacities of the downstream resources, i.e. the bed capacities in the ICU and ward, will not be exceeded. Additionally, we hope that our formulation of the problem will lead to a leveled bed demand without significant peaks. We will incorporate the uncertainty of patient demand and case mix in our model. There have been several approaches on this subject, for example in (F{\"u}15) and (BD07) and this work is in part in� uenced by these advances.}, language = {en} } @inproceedings{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Finding Minimum Balanced Separators - an Exact Approach}, series = {Operations Research Proceedings 2021}, booktitle = {Operations Research Proceedings 2021}, issn = {1438-0064}, doi = {https://doi.org/10.1007/978-3-031-08623-6_24}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83138}, pages = {154 -- 159}, abstract = {Balanced separators are node sets that split the graph into size bounded components. They find applications in different theoretical and practical problems. In this paper we discuss how to find a minimum set of balanced separators in node weighted graphs. Our contribution is a new and exact algorithm that solves Minimum Balanced Separators by a sequence of Hitting Set problems. The only other exact method appears to be a mixed-integer program (MIP) for the edge weighted case. We adapt this model to node weighted graphs and compare it to our approach on a set of instances, resembling transit networks. It shows that our algorithm is far superior on almost all test instances.}, language = {en} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {Determining all integer vertices of the PESP polytope by flipping arcs}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2020.5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78793}, abstract = {We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.}, language = {en} } @misc{BorndoerferEgererKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Egerer, Ascan and Karbstein, Marika and Messerschmidt, Ralf and Perez, Marc and Pfisterer, Steven and Strauß, Petra}, title = {Kombil{\"o}sung: Optimierung des Liniennetzes in Karlsruhe}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69677}, abstract = {Wir beschreiben die Optimierung des Nahverkehrsnetzes der Stadt Karlsruhe im Zusammmenhang mit den Baumaßnahmen der sogenannten Kombil{\"o}sung.}, language = {de} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {New Perspectives on PESP: T-Partitions and Separators}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2019.2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73853}, abstract = {In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time.}, language = {en} } @misc{BorndoerferDenissenHelleretal., author = {Bornd{\"o}rfer, Ralf and Denißen, Jonas and Heller, Simon and Klug, Torsten and K{\"u}pper, Michael and Lindner, Niels and Reuther, Markus and Schlechte, Thomas and S{\"o}hlke, Andreas and Steadman, William}, title = {Microscopic Timetable Optimization for a Moving Block System}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82547}, abstract = {We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality.}, language = {en} } @misc{LindnerLiebchenMasing, author = {Lindner, Niels and Liebchen, Christian and Masing, Berenike}, title = {Forward Cycle Bases and Periodic Timetabling}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2021.2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82756}, abstract = {Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds.}, language = {en} } @misc{LindnerMaristanydelasCasasSchiewe, author = {Lindner, Niels and Maristany de las Casas, Pedro and Schiewe, Philine}, title = {Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2021.7}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82716}, abstract = {We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport.}, language = {en} } @misc{BorndoerferKarbsteinLiebchenetal., author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Liebchen, Christian and Lindner, Niels}, title = {A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2018.16}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69688}, abstract = {We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same.}, language = {en} } @misc{LoebelLindnerBorndoerfer, author = {L{\"o}bel, Fabian and Lindner, Niels and Bornd{\"o}rfer, Ralf}, title = {The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing}, issn = {1438-0064}, doi = {https://doi.org/https://doi.org/10.1007/978-3-030-48439-2_92}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73868}, abstract = {The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.}, language = {en} } @misc{LindnervanLieshout, author = {Lindner, Niels and van Lieshout, Rolf}, title = {Benders Decomposition for the Periodic Event Scheduling Problem}, issn = {1438-0064}, doi = {10.1007/978-3-031-08623-6_43}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83338}, abstract = {The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib.}, language = {en} } @misc{MuellerMuñozGasseetal., author = {M{\"u}ller, Benjamin and Muñoz, Gonzalo and Gasse, Maxime and Gleixner, Ambros and Lodi, Andrea and Serrano, Felipe}, title = {On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75179}, abstract = {The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm's ability to generate strong dual bounds through extensive computational experiments.}, language = {en} } @misc{MuellerSerranoGleixner, author = {M{\"u}ller, Benjamin and Serrano, Felipe and Gleixner, Ambros}, title = {Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72759}, abstract = {One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly.}, language = {en} } @misc{BorndoerferReutherSchlechte, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas}, title = {A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51009}, abstract = {We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems.}, language = {en} } @misc{ItoShinano, author = {Ito, Satoshi and Shinano, Yuji}, title = {Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70591}, abstract = {The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds.}, language = {en} } @misc{ReutherBorndoerferSchlechteetal., author = {Reuther, Markus and Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Weider, Steffen}, title = {Integrated Optimization of Rolling Stock Rotations for Intercity Railways}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16424}, abstract = {This paper provides a highly integrated solution approach for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a generic hypergraph based mixed integer programming model and an integrated algorithm for the considered rolling stock rotation planning problem. The new developed approach is able to handle a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects. By the integration of this large bundle of technical railway aspects, we show that our approach has the power to produce implementable rolling stock rotations for our industrial cooperation partner DB Fernverkehr. This is the first time that the rolling stock rotations at DB Fernverkehr could be optimized by an automated system utilizing advanced mathematical programming techniques.}, language = {en} } @misc{Szabo, author = {Szab{\´o}, J{\´a}cint}, title = {The set of solutions to nomination validation in passive gas transportation networks with a generalized flow formula}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15151}, abstract = {In this paper we give an analytical description on the structure of solutions to the gas nomination validation problem in gas transportation networks. These networks are assumed to contain no active devices, only certain hypothetical pipelines, where the flow of gas is modeled by a generalized version of the quadratic Weymouth's equation. The purpose of considering generalized flow formulas is to be able to adapt our results to various gas network optimization problems involving gas flow formulas beyond Weymouth's equation. Such formulas can appear in leaves of branch and bound trees, or they can stem from discretization and linearization carried out at active devices. We call a balanced supply-demand vector a nomination, and the passive nomination validation problem is to decide whether there exist pressures at the nodes generating a given nomination. We prove that in our setup the pressure square vectors generating a given nomination form a one-dimensional connected and continuous curve in the pressure square space, and this curve is a line for the classical Weymouth's equation. We also present a visual approach for the easy comprehension of how this solution curve arises; we give a short investigation of the set of feasible nominations; and finally we give a proof that the nomination validation problem in gas networks with active devices is NP-complete.}, language = {en} } @misc{WaltherHillerSaitenmacher, author = {Walther, Tom and Hiller, Benjamin and Saitenmacher, Ren{\´e}}, title = {Polyhedral 3D Models for compressors in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65864}, abstract = {Compressor machines are crucial elements in a gas transmission network, required to compensate for the pressure loss caused by friction in the pipes. Modelling all physical and technical details of a compressor machine involves a large amount of nonlinearity, which makes it hard to use such models in the optimization of large-scale gas networks. In this paper, we are going to describe a modelling approach for the operating range of a compressor machine, starting from a physical reference model and resulting in a polyhedral representation in the 3D space of mass flow throughput as well as in- and outlet pressure.}, language = {en} } @phdthesis{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation: Models and Algorithms}, publisher = {S{\"u}dwestdeutscher Verlag f{\"u}r Hochschulschriften}, address = {Saarbr{\"u}cken, Germany}, isbn = {978-3-8381-3222-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-34272}, school = {Technische Universit{\"a}t Berlin}, pages = {239}, abstract = {This thesis is about mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity - the track allocation problem. This track allocation problem is a major challenge for a railway company, independent of whether a free market, a private monopoly, or a public monopoly is given. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large scale instances. This allows us to produce for the first time reliable solutions for a real world instance, i.e., the Simplon corridor in Switzerland. The opening chapter gives a comprehensive overview on railway planning problems. This provides insights into the regulatory and technical framework, it discusses the interaction of several planning steps, and identifies optimization potentials in railway transportation. The remainder of the thesis is comprised of two major parts. The first part is concerned with modeling railway systems to allow for resource and capacity analysis. Railway capacity has basically two dimensions, a space dimension which are the physical infrastructure elements as well as a time dimension that refers to the train movements, i.e., occupation or blocking times, on the physical infrastructure. Railway safety systems operate on the same principle all over the world. A train has to reserve infrastructure blocks for some time to pass through. Two trains reserving the same block of the infrastructure within the same point in time is called block conflict. Therefore, models for railway capacity involve the definition and calculation of reasonable running and associated reservation and blocking times to allow for a conflict free allocation. In the second and main part of the thesis, the optimal track allocation problem for macroscopic models of the railway system is considered. The literature for related problems is surveyed. A graph-theoretic model for the track allocation problem is developed. In that model optimal track allocations correspond to conflict-free paths in special time-expanded graphs. Furthermore, we made considerable progress on solving track allocation problems by two main features - a novel modeling approach for the macroscopic track allocation problem and algorithmic improvements based on the utilization of the bundle method. Finally, we go back to practice and present in the last chapter several case studies using the tools netcast and tsopt. We provide a computational comparison of our new models and standard packing models used in the literature. Our computational experience indicates that our approach, i.e., ``configuration models'', outperforms other models. Moreover, the rapid branching heuristic and the bundle method enable us to produce high quality solutions for very large scale instances, which has not been possible before. In addition, we present results for a theoretical and rather visionary auction framework for track allocation. We discuss several auction design questions and analyze experiments of various auction simulations. The highlights are results for the Simplon corridor in Switzerland. We optimized the train traffic through this tunnel using our models and software tools. To the best knowledge of the author and confirmed by several railway practitioners this was the first time that fully automatically produced track allocations on a macroscopic scale fulfill the requirements of the originating microscopic model, withstand the evaluation in the microscopic simulation tool OpenTrack, and exploit the infrastructure capacity. This documents the success of our approach in practice and the usefulness and applicability of mathematical optimization to railway track allocation.}, language = {en} } @misc{GroetschelStephan, author = {Gr{\"o}tschel, Martin and Stephan, R{\"u}diger}, title = {Characterization of Facets of the Hop Constrained Chain Polytope via Dynamic Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14914}, abstract = {In this paper, we study the hop constrained chain polytope, that is, the convex hull of the incidence vectors of (s,t)-chains using at most k arcs of a given digraph, and its dominant. We use extended formulations (implied by the inherent structure of the Moore-Bellman-Ford algorithm) to derive facet defining inequalities for these polyhedra via projection. Our findings result into characterizations of all facet defining {0,+1,-1}-inequalities for the hop constrained chain polytope and all facet defining {0,1}-inequalities for its dominant. Although the derived inequalities are already known, such classifications were not previously given to the best of our knowledge. Moreover, we use this approach to generalize so called jump inequalities, which have been introduced in a paper of Dahl and Gouveia in 2004.}, language = {en} } @misc{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation - Simulation and Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13632}, number = {11-32}, abstract = {Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway infrastructure provider. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market. This leads to an increase of slot requests and then it is natural that conflicts occur among them. Furthermore, railway infrastructure networks consist of very expensive assets, even more they are rigid due to the long-term upgrade process. In order to make best use of these valuable infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithmic methodology can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and a general framework to support the integration of simulation and optimization for railway capacity allocation.}, language = {en} }