@misc{Bley, author = {Bley, Andreas}, title = {Approximability of Unsplittable Shortest Path Routing Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8968}, number = {06-02}, abstract = {In this paper, we discuss the relation of unsplittable shortest path routing (USPR) to other routing schemes and study the approximability of three USPR network planning problems. Given a digraph \$D=(V,A)\$ and a set \$K\$ of directed commodities, an USPR is a set of flow paths \$\Phi_{(s,t)}\$, \$(s,t)\in K\$, such that there exists a metric \$\lambda=(\lambda_a)\in \mathbb{Z}^A_+\$ with respect to which each \$\Phi_{(s,t)}\$ is the unique shortest \$(s,t)\$-path. In the \textsc{Min-Con-USPR} problem, we seek for an USPR that minimizes the maximum congestion over all arcs. We show that this problem is hard to approximate within a factor of \$\mathcal{O}(|V|^{1-\epsilon})\$, but easily approximable within min\$(|A|,|K|)\$ in general and within \$\mathcal{O}(1)\$ if the underlying graph is an undirected cycle or a bidirected ring. We also construct examples where the minimum congestion that can be obtained by USPR is a factor of \$\Omega(|V|^2)\$ larger than that achievable by unsplittable flow routing or by shortest multi-path routing, and a factor of \$\Omega(|V|)\$ larger than by unsplittable source-invariant routing. In the CAP-USPR problem, we seek for a minimum cost installation of integer arc capacities that admit an USPR of the given commodities. We prove that this problem is \$\mathcal{NP}\$-hard to approximate within \$2-\epsilon\$ (even in the undirected case), and we devise approximation algorithms for various special cases. The fixed charge network design problem \textsc{Cap-USPR}, where the task is to find a minimum cost subgraph of \$D\$ whose fixed arc capacities admit an USPR of the commodities, is shown to be \$\mathcal{NPO}\$-complete. All three problems are of great practical interest in the planning of telecommunication networks that are based on shortest path routing protocols. Our results indicate that they are harder than the corresponding unsplittable flow or shortest multi-path routing problems.}, language = {en} } @misc{HauptmeierKrumkeRambauetal., author = {Hauptmeier, Dietrich and Krumke, Sven and Rambau, J{\"o}rg and Wirth., Hans-Christoph}, title = {Euler is Standing in Line}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3947}, number = {SC-99-06}, abstract = {In this paper we study algorithms for ``Dial-a-Ride'' transportation problems. In the basic version of the problem we are given transportation jobs between the vertices of a graph and the goal is to find a shortest transportation that serves all the jobs. This problem is known to be NP-hard even on trees. We consider the extension when precedence relations between the jobs with the same source are given. Our results include a polynomial time algorithm on paths and an approximation algorithm on general graphs with a performance of~\$9/4\$. For trees we improve the performance to~\$5/3\$.}, language = {en} } @misc{Bley, author = {Bley, Andreas}, title = {On the Complexity of Vertex-Disjoint Length-Restricted Path Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3639}, number = {SC-98-20}, abstract = {Let \$G=(V,E)\$ be a simple graph and \$s\$ and \$t\$ be two distinct vertices of \$G\$. A path in \$G\$ is called \$\ell\$-bounded for some \$\ell\in\mathbb{N}\$, if it does not contain more than \$\ell\$ edges. We study the computational complexity of approximating the optimum value for two optimization problems of finding sets of vertex-disjoint \$\ell\$-bounded \$s,t\$-paths in \$G\$. First, we show that computing the maximum number of vertex-disjoint \$\ell\$-bounded \$s,t\$-paths is \$\mathcal{AP\kern-1pt X}\$--complete for any fixed length bound \$\ell\geq 5\$. Second, for a given number \$k\in\mathbb{N}\$, \$1\leq k \leq |V|-1\$, and non-negative weights on the edges of \$G\$, the problem of finding \$k\$ vertex-disjoint \$\ell\$-bounded \$s,t\$-paths with minimal total weight is proven to be \$\mathcal{NPO}\$--complete for any length bound \$\ell\geq 5\$. Furthermore, we show that, even if \$G\$ is complete, it is \$\mathcal{NP}\$--complete to approximate the optimal solution value of this problem within a factor of \$2^{\langle\phi\rangle^\epsilon}\$ for any constant \$0<\epsilon<1\$, where \$\langle\phi\rangle\$ denotes the encoding size of the given problem instance \$\phi\$. We prove that these results are tight in the sense that for lengths \$\ell\leq 4\$ both problems are polynomially solvable, assuming that the weights satisfy a generalized triangle inequality in the weighted problem. All results presented also hold for directed and non-simple graphs. For the analogous problems where the path length restriction is replaced by the condition that all paths must have length equal to \$\ell\$ or where vertex-disjointness is replaced by edge-disjointness we obtain similar results.}, language = {en} } @misc{KrumkeRambauWeider, author = {Krumke, Sven and Rambau, J{\"o}rg and Weider, Steffen}, title = {An Approximation Algorithm for the Non-Preemptive Capacitated Dial-a-Ride Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6217}, number = {00-53}, abstract = {In the Capacitated Dial-a-Ride Problem (CDARP) we are given a transportation network and a finite set of transportation jobs. Each job specifies the source and target location which are both part of the network. A server which can carry at most \$C\$~objects at a time can move on the transportation network in order to process the transportation requests. The problem CDARP consists of finding a shortest transportation for the jobs starting and ending at a designated start location. In this paper we are concerned with the restriction of CDARP to graphs which are simple paths. This setting arises for instance when modelling applications in elevator transportation systems. It is known that even for this restricted class of graphs CDARP is NP-hard to solve. We provide a polynomial time approximation algorithm that finds a transportion of length at most thrice the length of the optimal transportation.}, language = {en} } @misc{Hiller, type = {Master Thesis}, author = {Hiller, Benjamin}, title = {Bad Guys are Rare: Probabilistic Analysis of an Elementary Dial-a-Ride Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10114}, school = {Zuse Institute Berlin (ZIB)}, abstract = {This thesis deals with a Dial-a-Ride problem on trees and considers both offline and online versions of this problem. We study the behavior of certain algorithms on random instances, i.e. we do probabilistic analysis. The focus is on results describing the typical behavior of the algorithms, i.e. results holding with (asymptotically) high probability. For the offline version, we present a simplified proof of a result of Coja-Oghlan, Krumke und Nierhoff. The results states that some heuristic using a minimum spanning tree to approximate a Steiner tree gives optimal results with high probability. This explains why this heuristic produces optimal solutions quite often. In the second part, probabilistic online versions of the problem are introduced. We study the online strategies REPLAN and IGNORE. Regarding the IGNORE strategy we can show that it works almost optimal under high load with high probability.}, language = {en} } @misc{Hiller, author = {Hiller, Benjamin}, title = {Probabilistic Competitive Analysis of a Dial-a-Ride Problem on Trees Under High Load}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8896}, number = {05-56}, abstract = {In this paper we consider a simple variant of the Online Dial-a-Ride Problem from a probabilistic point of view. To this end, we look at a probabilistic version of this online Dial-a-Ride problem and introduce a probabilistic notion of the competitive ratio which states that an algorithm performs well on the vast majority of the instances. Our main result is that under the assumption of high load a certain online algorithm is probabilistically \$(1+o(1))\$-competitive if the underlying graph is a tree. This result can be extended to general graphs by using well-known approximation techniques at the expense of a distortion factor~\$O(\log\|V\|)\$.}, language = {en} }