@misc{Keidel2013, type = {Master Thesis}, author = {Keidel, Stefan}, title = {Snapshots in Scalaris}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42282}, school = {Zuse Institute Berlin (ZIB)}, pages = {87}, year = {2013}, abstract = {Eines der gr{\"o}ßten Hindernisse beim praktischen Einsatz von Scalaris, einer skalierbaren Implementierung einer verteilten Hashtabelle mit Unterst{\"u}tzung f{\"u}r Transaktionen, ist das Fehlen eines Verfahrens zur Aufnahme eines konsistenten Zustandes des gesamten Systems. Wir stellen in dieser Arbeit ein einfaches Protokoll vor, dass diese Aufgabe erf{\"u}llt und sich, auf Grund der von uns gew{\"a}hlten Herangehensweise, leicht implementieren l{\"a}sst. Als Ausgangspunkt daf{\"u}r w{\"a}hlen wir aus einer Reihe von „klassischen" Snapshot-Algorithmen ein 1993 von Mattern entworfenes Verfahren, welches auf dem Algorithmus von Lai und Yang basiert, aus. Diese Entscheidung basiert auf einer gr{\"u}ndlichen Analyse der Protokolle unter Ber{\"u}cksichtigung der Architektur der existierenden Software. Im n{\"a}chsten Arbeitsschritt benutzen wir unser vollst{\"a}ndiges Wissen {\"u}ber die Interna des Transaktionssystems von Scalaris und vereinfachen damit das Verfahren hinsichtlich Benutzbarkeit und Implementierungskomplexit{\"a}t, ohne die Anforderungen an den aufgenommenen Zustand aufzuweichen. Statt einer losen Anh{\"a}ufung lokaler Zust{\"a}nde der einzelnen Teilnehmerknoten k{\"o}nnen wir am Ende eine große Schl{\"u}ssel-Wert-Tabelle als Ergebnis erzeugen, die konsistent ist, sich leicht weiterverarbeiten l{\"a}sst und die einem Zustand entspricht, in dem sich das System einmal befunden haben k{\"o}nnte. Nachdem wir das Verfahren dann in Software umgesetzt haben, werten wir die Ergebnisse hinsichtlich des Einflusses auf die Performanz des Gesamtsystems aus und diskutieren m{\"o}gliche Weiterentwicklungen.}, language = {de} } @misc{Hoffmann2013, type = {Master Thesis}, author = {Hoffmann, Marie}, title = {Approximate Algorithms for Distributed Systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42370}, school = {Zuse Institute Berlin (ZIB)}, pages = {75}, year = {2013}, abstract = {Peer-to-peer (P2P) systems form a special class of distributed systems. Typically, nodes in a P2P system are flat and share the same responsabilities. In this thesis we focus on three problems that occur in P2P systems: the storage of data replicates, quantile computation on distributed data streams, and churn rate estimation. Data replication is one of the oldest techniques to maintain stored data in a P2P system and to reply to read requests. Applications, which use data replication are distributed databases. They are part of an abstract overlay network and do not see the underlying network topology. The question is how to place a set of data replicates in a distributed system such that response times and failure probabilities become minimal without a priori knowledge of the topology of the underlying hardware nodes? We show how to utilize an agglomerative clustering procedure to reach this goal. State-of-the-art algorithms for aggregation of distributed data or data streams require at some point synchronization, or merge data aggregates hierarchically, which does not accompany the basic principle of P2P systems. We test whether randomized communication and merging of data aggregates are able to produce the same results. These data aggregates serve for quantile queries. Constituting and maintaining a P2P overlay network requires frequent message passing. It is a goal to minimize the number of maintenance messages since they consume bandwidth which might be missing for other applications. The lower bound of the frequency for mainte- nance messages is highly dependent on the churn rate of peers. We show how to estimate the mean lifetime of peers and to reduce the frequency for maintenance messages without destabilizing the infrastructure of the constituting overlay.}, language = {en} } @misc{LieSullivanTeckentrup2018, author = {Lie, Han Cheng and Sullivan, T. J. and Teckentrup, Aretha}, title = {Random forward models and log-likelihoods in Bayesian inverse problems}, volume = {6}, journal = {SIAM/ASA Journal on Uncertainty Quantification}, number = {4}, issn = {1438-0064}, arxiv = {http://arxiv.org/abs/1712.05717}, doi = {10.1137/18M1166523}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66324}, pages = {1600 -- 1629}, year = {2018}, abstract = {We consider the use of randomised forward models and log-likelihoods within the Bayesian approach to inverse problems. Such random approximations to the exact forward model or log-likelihood arise naturally when a computationally expensive model is approximated using a cheaper stochastic surrogate, as in Gaussian process emulation (kriging), or in the field of probabilistic numerical methods. We show that the Hellinger distance between the exact and approximate Bayesian posteriors is bounded by moments of the difference between the true and approximate log-likelihoods. Example applications of these stability results are given for randomised misfit models in large data applications and the probabilistic solution of ordinary differential equations.}, language = {en} } @misc{AmbellanHanikvonTycowicz2021, author = {Ambellan, Felix and Hanik, Martin and von Tycowicz, Christoph}, title = {Morphomatics: Geometric morphometrics in non-Euclidean shape spaces}, doi = {10.12752/8544}, year = {2021}, abstract = {Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates.}, language = {en} } @misc{Shinano2020, author = {Shinano, Yuji}, title = {UG - Ubiquity Generator Framework v0.9.1}, doi = {10.12752/8508}, year = {2020}, abstract = {UG is a generic framework to parallelize branch-and-bound based solvers (e.g., MIP, MINLP, ExactIP) in a distributed or shared memory computing environment. It exploits the powerful performance of state-of-the-art "base solvers", such as SCIP, CPLEX, etc. without the need for base solver parallelization. UG framework, ParaSCIP(ug[SCIP,MPI]) and FiberSCIP (ug[SCIP,Pthreads]) are available as a beta version. For MIP solving, ParaSCIP and FiberSCIP are well debugged and should be stable. For MINLP solving, they are relatively stable, but not as thoroughly debugged. This release version should handle branch-and-cut approaches where subproblems are defined by variable bounds and also by constrains for ug[SCIP,*] ParaSCIP and FiberSCIP). Therefore, problem classes other than MIP or MINLP can be handled, but they have not been tested yet. v0.9.1: Update orbitope cip files.}, language = {en} } @misc{Krause2021, type = {Master Thesis}, author = {Krause, Jan}, title = {Investigation of Options to Handle 3D MRI Data via Convolutional Neural Networks Application in Knee Osteoarthritits Classification}, pages = {127}, year = {2021}, language = {en} } @misc{Shestakov2021, type = {Master Thesis}, author = {Shestakov, Alexey}, title = {A Deep Learning Method for Automated Detection of Meniscal Tears in Meniscal Sub-Regions in 3D MRI Data}, pages = {96}, year = {2021}, abstract = {This work presents a fully automated pipeline, centered around a deep neural network, as well as a method to train that network in an efficient manner, that enables accurate detection of lesions in meniscal anatomical subregions. The network architecture is based on a transformer encoder/decoder. It is trained on DESS and tuned on IW TSE 3D MRI scans sourced from the Osteoarthritis Initiative. Furthermore, it is trained in a multilabel, and multitask fashion, using an auxiliary detection head. The former enables implicit localisation of meniscal defects, that to the best of my knowledge, has not yet been reported elsewhere. The latter enables efficient learning on the entire 3D MRI volume. Thus, the proposed method does not require any expert knowledge at inference. Aggregated inference results from two datasets resulted in an overall AUCROC result of 0.90, 0.91 and 0.93 for meniscal lesion detection anywhere in the knee, in medial and in lateral menisci respectively. These results compare very well to the related work, even though only a fraction of the data has been utilized. Clinical applicability and benefit is yet to be determined.}, language = {en} } @misc{RiberaBorrellQuerRichteretal.2021, author = {Ribera Borrell, Enric and Quer, Jannes and Richter, Lorenz and Sch{\"u}tte, Christof}, title = {Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics}, issn = {1438-0064}, year = {2021}, abstract = {Sampling rare events in metastable dynamical systems is often a computationally expensive task and one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate the problem of finding optimal importance sampling controls as a stochastic optimization problem, this then brings additional numerical challenges and the convergence of corresponding algorithms might as well suffer from metastabilty. In this article we address this issue by combining systematic control approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more effective than previous attempts and that only the combination of the two approaches leads to a satisfying convergence and therefore to an efficient sampling in certain metastable settings.}, language = {en} } @misc{Paskin2022, type = {Master Thesis}, author = {Paskin, Martha}, title = {Estimating 3D Shape of the Head Skeleton of Basking Sharks Using Annotated Landmarks on a 2D Image}, year = {2022}, abstract = {Basking sharks are thought to be one of the most efficient filter-feeding fish in terms of the throughput of water filtered through their gills. Details about the underlying morphology of their branchial region have not been studied due to various challenges in acquiring real-world data. The present thesis aims to facilitate this, by developing a mathematical shape model which constructs the 3D structure of the head skeleton of a basking shark using annotated landmarks on a single 2D image. This is an ill-posed problem as estimating the depth of a 3D object from a single 2D view is, in general, not possible. To reduce this ambiguity, we create a set of pre-defined training shapes in 3D from CT scans of basking sharks. First, the damaged structures of the sharks in the scans are corrected via solving a set of optimization problems, before using them as accurate 3D representations of the object. Then, two approaches are employed for the 2D-to-3D shape fitting problem-an Active Shape Model approach and a Kendall's Shape Space approach. The former represents a shape as a point on a high-dimensional Euclidean space, whereas the latter represents a shape as an equivalence class of points in this Euclidean space. Kendall's shape space approach is a novel technique that has not yet been applied in this context, and a comprehensive comparison of the two approaches suggests this approach to be superior for the problem at hand. This can be credited to an improved interpolation of the training shapes.}, language = {en} } @misc{PaskinBaumDeanetal.2022, author = {Paskin, Martha and Baum, Daniel and Dean, Mason N. and von Tycowicz, Christoph}, title = {A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks -- Source Code and Data}, doi = {10.12752/8730}, year = {2022}, abstract = {Source code and novel dataset of basking shark head skeletons facilitating the reproduction of the results presented in 'A Kendall Shape Space Approach to 3D Shape Estimation from 2D Landmarks' - ECCV 2022.}, language = {en} }