@misc{Paskin2022, type = {Master Thesis}, author = {Paskin, Martha}, title = {Estimating 3D Shape of the Head Skeleton of Basking Sharks Using Annotated Landmarks on a 2D Image}, year = {2022}, abstract = {Basking sharks are thought to be one of the most efficient filter-feeding fish in terms of the throughput of water filtered through their gills. Details about the underlying morphology of their branchial region have not been studied due to various challenges in acquiring real-world data. The present thesis aims to facilitate this, by developing a mathematical shape model which constructs the 3D structure of the head skeleton of a basking shark using annotated landmarks on a single 2D image. This is an ill-posed problem as estimating the depth of a 3D object from a single 2D view is, in general, not possible. To reduce this ambiguity, we create a set of pre-defined training shapes in 3D from CT scans of basking sharks. First, the damaged structures of the sharks in the scans are corrected via solving a set of optimization problems, before using them as accurate 3D representations of the object. Then, two approaches are employed for the 2D-to-3D shape fitting problem-an Active Shape Model approach and a Kendall's Shape Space approach. The former represents a shape as a point on a high-dimensional Euclidean space, whereas the latter represents a shape as an equivalence class of points in this Euclidean space. Kendall's shape space approach is a novel technique that has not yet been applied in this context, and a comprehensive comparison of the two approaches suggests this approach to be superior for the problem at hand. This can be credited to an improved interpolation of the training shapes.}, language = {en} } @masterthesis{Witzig2013, type = {Bachelor Thesis}, author = {Witzig, Jakob}, title = {Effiziente Reoptimierung in Branch\&Bound-Verfahren f{\"u}r die Steuerung von Aufz{\"u}gen}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42210}, school = {Zuse Institute Berlin (ZIB)}, pages = {111}, year = {2013}, abstract = {Heutzutage ist eine Vielzahl der mehrst{\"o}ckigen Geb{\"a}ude mit Personenaufzugsgruppen ausgestattet. Uns wohl bekannt sind die sogenannten konventionellen Systeme. Bei diesen Systemen bet{\"a}tigt jeder ankommende Passagier eine der beiden Richtungstasten und teilt dem dahinterstehenden Steuerungsalgorithmus seine gew{\"u}nschte Startetage und Fahrtrichtung mit. Betreten wird der zuerst auf der Startetage ankommende Aufzug mit gleicher Fahrtrichtung und ausreichend Kapazit{\"a}t. Die entsprechende Zieletage wird dem System erst nach dem Betreten der Fahrgastkabine mitgeteilt. Neben diesen konventionellen Systemen gibt es Aufzugsgruppen mit Zielrufsteuerung. Die Besonderheit eines zielrufgesteuerten Systems ist, dass ein ankommender Passagier bereits auf der Startetage seine gew{\"u}nschte Zieletage angibt und eine R{\"u}ckmeldung vom System erh{\"a}lt, welchen Aufzug er nutzen soll. Diese Zuweisung durch das System hat das Ziel, die Warte- und Reisezeiten der Passagiere zu minimieren. Ein wesentlicher Faktor bei der Berechnung warte- und reisezeitminimaler Fahrpl{\"a}ne ist das momentane Verkehrsmuster. Eine Einteilung der Verkehrsszenarien l{\"a}sst sich am besten bei B{\"u}rogeb{\"a}uden vornehmen. So ist es typisch f{\"u}r die Morgenstunden, dass jeder Passagier auf einer Zugangsebene seine Fahrt beginnt und alle Passagiere die gleiche Fahrtrichtung haben. Unter einer Zugangsebene ist z. B. der Haupteingang oder ein Parkdeck zu verstehen. Ein weiterer wesentlicher Punkt bei Zielrufsystemen ist die Art der Zuweisung der Passagiere durch das System. Zum einen gibt es unmittelbar zuweisende (UZ-) Systeme. In einem UZ-System wird nach jeder Ankunft eines Passagiers eine Momentaufnahme des momentanen Verkehrs erstellt und es findet eine Neuplanung und Zuweisung statt. Eine solche Momentaufnahme werden wir im sp{\"a}teren Verkauf als Schnappschussproblem bezeichnen. Jeder Passagier bekommt im Anschluss an die L{\"o}sung des Schnappschussproblems eine Mitteilung vom System, z. B. {\"u}ber ein Display, welchen Aufzug er benutzen soll. Zum anderen gibt es verz{\"o}gert zuweisende (VZ-) Systeme. In diesen Systemen wird die Erstellung und L{\"o}sung eines Schnappschussproblems bis kurz vor Ankunft eines Aufzuges auf einer Etage verz{\"o}gert. In einem VZ-System teilt das System allen wartenden Passagieren die geplanten Zieletagen des ankommenden Aufzugs mit. Jeder Passagier, der einen Ruf get{\"a}tigt hat und zu einer dieser Zieletagen fahren will, kann jetzt diesen Aufzug betreten. Durch die Verz{\"o}gerung muss im Vergleich zu einem UZ-System eine weitaus gr{\"o}ßere Menge von Passagieren zugewiesen werden. Dadurch kann der L{\"o}sungsprozess bedeutend aufw{\"a}ndiger werden. Vorteil eines VZ-Systems ist hingegen der gr{\"o}ßere Freiheitsgrad bei der Optimierung, da aufgrund der sp{\"a}ten Zuweisung die weitere Verkehrsentwicklung mit einbezogen werden kann. VZ-Systeme sind aufgrund des gr{\"o}ßeren Freiheitsgrades interessant f{\"u}r die Praxis ist, wir uns demzufolge in dieser Arbeit mit einer effizienteren L{\"o}sung dieser Art von Schnappschussproblemen befassen. Es gen{\"u}gt dabei den L{\"o}sungsprozess eines Schnappschussproblems zu betrachten. Das Ziel ist eine Reduzierung der ben{\"o}tigten Rechenzeit. Unter Reoptimierung verstehen wir die Konstruktion zul{\"a}ssiger Spalten in den jeweiligen Iterationsrunden der Spaltengenerierung innerhalb eines Schnappschussproblems. Als eine Iterationsrunde bezeichnet wir einer Menge zul{\"a}ssiger Touren mit negativen reduzierten Kosten. Eine effiziente Reoptimierung zeichnet sich durch die Wiederverwendung und Aufbereitung von Informationen aus vorangegangenen Iterationsrunden desselben Schnappschussproblems aus. Zu den wichtigen Informationen geh{\"o}rt der konstruierte Suchbaum der vorherigen Iterationsrunde mit seinen ausgeloteten (abgeschnittenen) Bl{\"a}ttern sowie konstruierten Touren bzw. Spalten, welche in der Iterationsrunde ihrer Konstruktion nicht zur L{\"o}sung des Teilproblems der Spaltengenerierung beitrugen. Eine solche Wiederverwendung und Aufbereitung von Informationen nennen wir Warmstart.}, language = {de} } @misc{BeckerHiller2020, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77684}, year = {2020}, abstract = {In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested.}, language = {en} } @misc{KempkeKuntKatamishetal.2025, author = {Kempke, Nils-Christian and Kunt, Tim and Katamish, Bassel and Vanaret, Charlie and Sasanpour, Shima and Clarner, Jan-Patrick and Koch, Thorsten}, title = {Developing heuristic solution techniques for large-scale unit commitment models}, issn = {1438-0064}, arxiv = {http://arxiv.org/abs/2502.19012}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-99555}, year = {2025}, abstract = {Shifting towards renewable energy sources and reducing carbon emissions necessitate sophisticated energy system planning, optimization, and extension. Energy systems optimization models (ESOMs) often form the basis for political and operational decision-making. ESOMs are frequently formulated as linear (LPs) and mixed-integer linear (MIP) problems. MIPs allow continuous and discrete decision variables. Consequently, they are substantially more expressive than LPs but also more challenging to solve. The ever-growing size and complexity of ESOMs take a toll on the computational time of state-of-the-art commercial solvers. Indeed, for large-scale ESOMs, solving the LP relaxation -- the basis of modern MIP solution algorithms -- can be very costly. These time requirements can render ESOM MIPs impractical for real-world applications. This article considers a set of large-scale decarbonization-focused unit commitment models with expansion decisions based on the REMix framework (up to 83 million variables and 900,000 discrete decision variables). For these particular instances, the solution to the LP relaxation and the MIP optimum lie close. Based on this observation, we investigate the application of relaxation-enforced neighborhood search (RENS), machine learning guided rounding, and a fix-and-propagate (FP) heuristic as a standalone solution method. Our approach generated feasible solutions 20 to 100 times faster than GUROBI, achieving comparable solution quality with primal-dual gaps as low as 1\% and up to 35\%. This enabled us to solve numerous scenarios without lowering the quality of our models. For some instances that Gurobi could not solve within two days, our FP method provided feasible solutions in under one hour.}, language = {en} } @misc{ChraparyDalitzNeunetal.2017, author = {Chrapary, Hagen and Dalitz, Wolfgang and Neun, Winfried and Sperber, Wolfram}, title = {Design, concepts, and state of the art of the swMATH service}, issn = {1438-0064}, doi = {10.1007/s11786-017-0305-5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62263}, year = {2017}, abstract = {In this paper, the concepts and design for an efficient information service for mathematical software and further mathematical research data are presented. The publication-based approach and the Web-based approach are the main building blocks of the service and will be discussed. Heuristic methods are used for identification, extraction, and ranking of information about software and other mathematical research data. The methods provide not only information about the research data but also link software and mathematical research data to the scientific context.}, language = {en} } @misc{NielsenWeber2014, author = {Nielsen, Adam and Weber, Marcus}, title = {Computing the nearest reversible Markov chain}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53292}, year = {2014}, abstract = {Reversible Markov chains are the basis of many applications. However, computing transition probabilities by a finite sampling of a Markov chain can lead to truncation errors. Even if the original Markov chain is reversible, the approximated Markov chain might be non-reversible and will lose important properties, like the real valued spectrum. In this paper, we show how to find the closest reversible Markov chain to a given transition matrix. It turns out that this matrix can be computed by solving a convex minimization problem.}, language = {en} } @article{NielsenWeber2015, author = {Nielsen, Adam and Weber, Marcus}, title = {Computing the nearest reversible Markov chain}, volume = {22}, journal = {Numerical Linear Algebra with Applications}, number = {3}, doi = {10.1002/nla.1967}, pages = {483 -- 499}, year = {2015}, abstract = {Reversible Markov chains are the basis of many applications. However, computing transition probabilities by a finite sampling of a Markov chain can lead to truncation errors. Even if the original Markov chain is reversible, the approximated Markov chain might be non-reversible and will lose important properties, like the real valued spectrum. In this paper, we show how to find the closest reversible Markov chain to a given transition matrix. It turns out that this matrix can be computed by solving a convex minimization problem.}, language = {en} } @misc{TateiwaShinanoYamamuraetal.2021, author = {Tateiwa, Nariaki and Shinano, Yuji and Yamamura, Keiichiro and Yoshida, Akihiro and Kaji, Shizuo and Yasuda, Masaya and Fujisawa, Katsuki}, title = {CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82802}, year = {2021}, abstract = {Lattice problems are a class of optimization problems that are notably hard. There are no classical or quantum algorithms known to solve these problems efficiently. Their hardness has made lattices a major cryptographic primitive for post-quantum cryptography. Several different approaches have been used for lattice problems with different computational profiles; some suffer from super-exponential time, and others require exponential space. This motivated us to develop a novel lattice problem solver, CMAP-LAP, based on the clever coordination of different algorithms that run massively in parallel. With our flexible framework, heterogeneous modules run asynchronously in parallel on a large-scale distributed system while exchanging information, which drastically boosts the overall performance. We also implement full checkpoint-and-restart functionality, which is vital to high-dimensional lattice problems. Through numerical experiments with up to 103,680 cores, we evaluated the performance and stability of our system and demonstrated its high capability for future massive-scale experiments.}, language = {en} } @misc{ItoShinano2018, author = {Ito, Satoshi and Shinano, Yuji}, title = {Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70591}, year = {2018}, abstract = {The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds.}, language = {en} } @misc{ShinanoRehfeldtKoch2018, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71118}, year = {2018}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} }