@misc{HohageSchmidtZschiedrich, author = {Hohage, Thorsten and Schmidt, Frank and Zschiedrich, Lin}, title = {A new method for the solution of scattering problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6683}, number = {02-01}, abstract = {We present a new efficient algorithm for the solution of direct time-harmonic scattering problems based on the Laplace transform. This method does not rely on an explicit knowledge of a Green function or a series representation of the solution, and it can be used for the solution of problems with radially symmetric potentials and problems with waveguides. The starting point is an alternative characterization of outgoing waves called \emph{pole condition}, which is equivalent to Sommerfeld's radiation condition for problems with radially symmetric potentials. We obtain a new representation formula, which can be used for a numerical evaluation of the exterior field in a postprocessing step. Based on previous theoretical studies, we discuss the numerical realization of our algorithm and compare its performance to the PML method.}, language = {en} } @misc{Schmidt, author = {Schmidt, Frank}, title = {An Alternative Derivation of the Exact DtN-Map on a Circle}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3752}, number = {SC-98-32}, abstract = {The paper supplies an alternative derivation of the exact boundary conditions needed for the solution of time-harmonic acoustic scattering problems modeled by the Helmholtz equation. The main idea is to consider the exterior domain problem as an initial value problem with initial data given on the boundary of a disc or sphere. The solution of the exterior domain problem is obtained via Laplace transformation techniques, where the asymptotic Sommerfeld radiation condition is reformulated accordingly.}, language = {en} } @misc{VolkweinWeiser, author = {Volkwein, Stefan and Weiser, Martin}, title = {Affine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6243}, number = {00-56}, abstract = {An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solves. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation.}, language = {en} } @misc{HohageSchmidtZschiedrich, author = {Hohage, Thorsten and Schmidt, Frank and Zschiedrich, Lin}, title = {Solving time-harmonic scattering problems based on the condition: Theory}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6279}, number = {01-01}, abstract = {The pole condition is a general concept for the theoretical analysis and the numerical solution of a variety of wave propagation problems. It says that the Laplace transform of the physical solution in radial direction has no poles in the lower complex half-plane. In the present paper we show that for the Helmholtz equation with a radially symmetric potential the pole condition is equivalent to Sommerfeld's radiation condition. Moreover, a new representation formula based on the pole condition is derived and used to prove existence, uniqueness and asymptotic properties of solutions. This lays the foundations of a promising new algorithm to solve time-harmonic scattering problems numerically and provides a new approach for analyzing existing algorithms such as the Perfectly Matched Layer (PML) method and the Bayliss-Gunzburger-Turkel (BGT) algorithm.}, language = {en} }