@misc{DeuflhardErdmannRoitzschetal., author = {Deuflhard, Peter and Erdmann, Bodo and Roitzsch, Rainer and Lines, Glenn Terje}, title = {Adaptive Finite Element Simulation of Ventricular Fibrillation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9431}, number = {06-49}, abstract = {The dynamics of ventricular fibrillation caused by irregular excitation is simulated in the frame of the monodomain model with an action potential model due to Aliev-Panfilov for a human 3D geometry. The numerical solution of this multiscale reaction-diffusion problem is attacked by algorithms which are fully adaptive in both space and time (code library {\sc Kardos}). The obtained results clearly demonstrate an accurate resolution of the cardiac potential during the excitation and the plateau phases (in the regular cycle) as well as after a reentrant excitation (in the irregular cycle).}, language = {en} }