@phdthesis{Lang, author = {Lang, Jens}, title = {Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4089}, number = {SC-99-20}, abstract = {This monograph has been written to illustrate the interlocking of theory, algorithm, and application in developing solution techniques for complex PDE systems. A deep theoretical understanding is necessary to produce a powerful idea leading to a successful algorithm. Efficient and robust implementation is the key to make the algorithm perform satisfactorily. The extra insight obtained by solving real--life problems brings out the structure of the method more clearly and suggests often ways to improve the numerical algorithm. It is my intention to impart the beauty and complexity found in both the theoretical investigation of the adaptive algorithm proposed here, i.e., the coupling of Rosenbrock methods in time and multilevel finite elements in space, and its realization. I hope that this method will find many more interesting applications.}, language = {en} } @misc{LangMerz, author = {Lang, Jens and Merz, Wilhelm}, title = {Two-Dimensional Adaptive Simulation of Dopant Diffusion in Silicon}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5716}, number = {00-03}, abstract = {One important step in the fabrication of silicon-based integrated circuits is the creation of semiconducting areas by diffusion of dopant impurities into silicon. Complex models have been developed to investigate the redistribution of dopants and point defects. In general, numerical analysis of the resulting PDEs is the central tool to assess the modelling process. We present an adaptive approach which is able to judge the quality of the numerical approximation and which provides an automatic mesh improvement. Using linearly implicit methods in time and multilevel finite elements in space, we are able to integrate efficiently the arising reaction-drift-diffusion equations with high accuracy. Two different diffusion processes of practical interest are simulated.}, language = {en} }