@misc{Semler, type = {Master Thesis}, author = {Semler, Phillip}, title = {Mixed finite elements in cloth simulation}, pages = {116}, abstract = {This master thesis investigates the use and behaviour of a mixed finite element formulation for the simulation of garments. The garment is modelled as an isotropic shell and is related to its mid-surface by energetic degeneration. Based on this, an energy functional is constructed, which contains the deformation and the mid-surface vector as degree of freedom. It is then shown why this problem does not correspond to a saddle point problem, but to a non-convex energy minimization. The implementation of the energy minimization takes place with the ZIB-internal FE framework Kaskade7.4, whereby a geometric linear and different geometric non-linear problems are examined, whereby for a selected, non-linear example a comparison is made with an existing implementation on basis of Morley elements. The further evaluations include the analysis of the quantitative and qualitative results, the used solution method, the behaviour of the system energy as well as the used CPU time.}, language = {en} } @misc{Lubkoll, type = {Master Thesis}, author = {Lubkoll, Lars}, title = {Optimal Control in Implant Shape Design}, pages = {67}, language = {en} } @misc{Lehmann, type = {Master Thesis}, author = {Lehmann, Felix}, title = {Inexaktheit in Newton-Lagrange-Verfahren f{\"u}r Optimierungsprobleme mit Elliptischen PDGL-Nebenbedingungen}, pages = {73}, abstract = {Bei der numerischen L{\"o}sung von Optimalsteuerungsproblemen mit elliptischen partiellen Differentialgleichungen als Nebenbedingung treten unvermeidlich Diskretisierungs- und Iterationsfehler auf. Man ist aus Aufwandsgr{\"u}nden daran interessiert die dabei entstehenden Fehler nicht sehr klein w{\"a}hlen zu m{\"u}ssen. In der Folge werden die linearisierten Nebenbedingungen in einem Composite-Step-Verfahren nicht exakt erf{\"u}llt. In dieser Arbeit wird der Einfluss dieser Ungenauigkeit auf das Konvergenzverhalten von Newton-Lagrange-Verfahren untersucht. Dabei sollen mehrere einschl{\"a}gige lokale Konvergenzresultate diskutiert werden. Anschließend wird ein konkretes Composite-Step-Verfahren formuliert, in dem die Genauigkeit der inneren Iterationsverfahren adaptiv gesteuert werden kann. Am Ende der Arbeit wird an zwei Musterproblemen die hohe {\"U}bereinstimmung der analytischen Voraussagen und der tats{\"a}chlichen Performanz der dargestellten Methoden demonstriert.}, language = {de} } @misc{Mathew, type = {Master Thesis}, author = {Mathew, Maria}, title = {Numerical treatment of radiative heat transfer on cooling process}, pages = {53}, abstract = {This thesis examines how taking into account surface to surface radiation impacts the cooling process in general. We formulate the non local bound- ary condition after introducing the general setting for the cooling model. In section 3, the mathematical description of the radiative heat transfer is dis- cussed. We cover the implementation of the radiative matrix in section 4, which is followed by a brief explanation of the radiative matrix's structure and several techniques to dealing with the accompanying challenges. We investigate the importance of radiative heat transport by applying the given approach to a two-dimensional geometry and computing the ensuing cooling curves. We compare the findings of our computation to those ac- quired from experiment conducted and find that they are extremely similar. There is a considerable difference (of about 35\%) in the time of cooling of the surface where there is a possibility of influence of radiation from the second surface to that of the surface with no influence at all. Although it is possible to infer that heat convection plays a role in the total result, this has yet to be proved. However, one can clearly see the significance of the surface to surface radiative heat transfer on these parts confirming the research question posed at the begining. The effect of the surface to surface radiative heat transfer has an influence on the resulting cooling time and should be considered in the model.}, language = {en} } @misc{Baumann, type = {Master Thesis}, author = {Baumann, Felix}, title = {Impact of Contact Surfaces on the Death Estimation}, pages = {69}, abstract = {The determination of time of death is one of the central tasks in forensic medicine. A standard method of time of death estimation elies on matching temperature measurements of the corpse with a post-mortem cooling model. In addition to widely used empirical post-mortem models, modelling based on a precise mathematical simulation of the cooling process have been gaining popularity. The simulation based cooling models and the resulting time of death estimates dependon a large variety of parameters. These include hermal properties for different body tissue types, environmental conditions such as temperature and air flow, and the presence of clothing and coverings. In this thesis we focus on a specific arameter - the contact between corpse and underground - and investigate its influence on the time of death estimation. Resulting we aim to answer the question whether it is necessary to consider contact mechanics in the underlying mathematical cooling model.}, language = {en} }