@misc{CordesWeberSchmidtEhrenberg, author = {Cordes, Frank and Weber, Marcus and Schmidt-Ehrenberg, Johannes}, title = {Metastable Conformations via successive Perron-Cluster Cluster Analysis of dihedrals}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7074}, number = {02-40}, abstract = {Decomposition of the high dimensional conformational space of bio-molecules into metastable subsets is used for data reduction of long molecular trajectories in order to facilitate chemical analysis and to improve convergence of simulations within these subsets. The metastability is identified by the Perron-cluster cluster analysis of a Markov process that generates the thermodynamic distribution. A necessary prerequisite of this analysis is the discretization of the conformational space. A combinatorial approach via discretization of each degree of freedom will end in the so called ''curse of dimension''. In the following paper we analyze Hybrid Monte Carlo simulations of small, drug-like biomolecules and focus on the dihedral degrees of freedom as indicators of conformational changes. To avoid the ''curse of dimension'', the projection of the underlying Markov operator on each dihedral is analyzed according to its metastability. In each decomposition step of a recursive procedure, those significant dihedrals, which indicate high metastability, are used for further decomposition. The procedure is introduced as part of a hierarchical protocol of simulations at different temperatures. The convergence of simulations within metastable subsets is used as an ''a posteriori'' criterion for a successful identification of metastability. All results are presented with the visualization program AmiraMol.}, language = {en} } @misc{VegaSchuetteConrad, author = {Vega, Iliusi and Sch{\"u}tte, Christof and Conrad, Tim}, title = {SAIMeR: Self-adapted method for the identification of metastable states in real-world time series}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50130}, abstract = {In the framework of time series analysis with recurrence networks, we introduce SAIMeR, a heuristic self-adapted method that determines the elusive recurrence threshold and identifies metastable states in complex time series. To identify metastable states as well as the transitions between them, we use graph theory concepts and a fuzzy partitioning clustering algorithm. We illustrate SAIMeR by applying it to three real-world time series and show that it is able to identify metastable states in real-world data with noise and missing data points. Finally, we suggest a way to choose the embedding parameters used to construct the state space in which this method is performed, based on the analysis of how the values of these parameters affect two recurrence quantitative measurements: recurrence rate and entropy.}, language = {en} } @misc{WeberWalterKubeetal., author = {Weber, Marcus and Walter, Lionel and Kube, Susanna and Deuflhard, Peter}, title = {Stable computation of probability densities for metastable dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9331}, number = {06-39}, abstract = {Whenever the invariant stationary density of metastable dynamical systems decomposes into almost invariant partial densities, its computation as eigenvector of some transition probability matrix is an ill-conditioned problem. In order to avoid this computational difficulty, we suggest to apply an aggregation/disaggregation method which only addresses wellconditioned sub-problems and thus results in a stable algorithm. In contrast to existing methods, the aggregation step is done via a sampling algorithm which covers only small patches of the sampling space. Finally, the theoretical analysis is illustrated by two biomolecular examples.}, language = {en} }